Integrated Gaussian Processes for Robust and Adaptive Multi-Object Tracking
- URL: http://arxiv.org/abs/2507.04116v1
- Date: Sat, 05 Jul 2025 17:45:31 GMT
- Title: Integrated Gaussian Processes for Robust and Adaptive Multi-Object Tracking
- Authors: Fred Lydeard, Bashar I. Ahmad, Simon Godsill,
- Abstract summary: This paper presents a computationally efficient multi-object tracking approach that can minimise track breaks (e.g., in challenging environments and against agile targets)<n>It capitalises on the flexibilities offered by the integrated Gaussian process as a motion model and the convenient statistical properties of non-homogeneous Poisson processes as a suitable observation model.<n>Performance evaluation and benchmarking using synthetic and real data show that GaPP-Class and GaPP-ReaCtion outperform other state-of-the-art tracking algorithms.
- Score: 1.338174941551702
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents a computationally efficient multi-object tracking approach that can minimise track breaks (e.g., in challenging environments and against agile targets), learn the measurement model parameters on-line (e.g., in dynamically changing scenes) and infer the class of the tracked objects, if joint tracking and kinematic behaviour classification is sought. It capitalises on the flexibilities offered by the integrated Gaussian process as a motion model and the convenient statistical properties of non-homogeneous Poisson processes as a suitable observation model. This can be combined with the proposed effective track revival / stitching mechanism. We accordingly introduce the two robust and adaptive trackers, Gaussian and Poisson Process with Classification (GaPP-Class) and GaPP with Revival and Classification (GaPP-ReaCtion). They employ an appropriate particle filtering inference scheme that efficiently integrates track management and hyperparameter learning (including the object class, if relevant). GaPP-ReaCtion extends GaPP-Class with the addition of a Markov Chain Monte Carlo kernel applied to each particle permitting track revival and stitching (e.g., within a few time steps after deleting a trajectory). Performance evaluation and benchmarking using synthetic and real data show that GaPP-Class and GaPP-ReaCtion outperform other state-of-the-art tracking algorithms. For example, GaPP-ReaCtion significantly reduces track breaks (e.g., by around 30% from real radar data and markedly more from simulated data).
Related papers
- HybridTrack: A Hybrid Approach for Robust Multi-Object Tracking [7.916733469603948]
HybridTrack is a novel 3D multi-object tracking approach for vehicles.<n>It integrates a data-driven Kalman Filter (KF) within a tracking-by-detection paradigm.<n>It achieves 82.72% HOTA accuracy, significantly outperforming state-of-the-art methods.
arXiv Detail & Related papers (2025-01-02T14:17:19Z) - PPT: Pretraining with Pseudo-Labeled Trajectories for Motion Forecasting [90.47748423913369]
State-of-the-art motion forecasting models rely on large curated datasets with manually annotated or heavily post-processed trajectories.<n>PWT is a simple and scalable alternative that uses unprocessed and diverse trajectories automatically generated from off-the-shelf 3D detectors and tracking.<n>It achieves strong performance across standard benchmarks particularly in low-data regimes, and in cross-domain, end-to-end and multi-class settings.
arXiv Detail & Related papers (2024-12-09T13:48:15Z) - SUDS: A Strategy for Unsupervised Drift Sampling [0.5437605013181142]
Supervised machine learning encounters concept drift, where the data distribution changes over time, degrading performance.
We present the Strategy for Drift Sampling (SUDS), a novel method that selects homogeneous samples for retraining using existing drift detection algorithms.
Our results demonstrate the efficacy of SUDS in optimizing labeled data use in dynamic environments.
arXiv Detail & Related papers (2024-11-05T10:55:29Z) - DH-PTAM: A Deep Hybrid Stereo Events-Frames Parallel Tracking And Mapping System [1.443696537295348]
This paper presents a robust approach for a visual parallel tracking and mapping (PTAM) system that excels in challenging environments.
Our proposed method combines the strengths of heterogeneous multi-modal visual sensors, in a unified reference frame.
Our implementation's research-based Python API is publicly available on GitHub.
arXiv Detail & Related papers (2023-06-02T19:52:13Z) - Joint Feature Learning and Relation Modeling for Tracking: A One-Stream
Framework [76.70603443624012]
We propose a novel one-stream tracking (OSTrack) framework that unifies feature learning and relation modeling.
In this way, discriminative target-oriented features can be dynamically extracted by mutual guidance.
OSTrack achieves state-of-the-art performance on multiple benchmarks, in particular, it shows impressive results on the one-shot tracking benchmark GOT-10k.
arXiv Detail & Related papers (2022-03-22T18:37:11Z) - GPU-Accelerated Policy Optimization via Batch Automatic Differentiation
of Gaussian Processes for Real-World Control [8.720903734757627]
We develop a policy optimization method by leveraging fast predictive sampling methods to process batches of trajectories in every forward pass.
We demonstrate the effectiveness of our approach in training policies on a set of reference-tracking control experiments with a heavy-duty machine.
arXiv Detail & Related papers (2022-02-28T09:31:15Z) - Adversarial Feature Augmentation and Normalization for Visual
Recognition [109.6834687220478]
Recent advances in computer vision take advantage of adversarial data augmentation to ameliorate the generalization ability of classification models.
Here, we present an effective and efficient alternative that advocates adversarial augmentation on intermediate feature embeddings.
We validate the proposed approach across diverse visual recognition tasks with representative backbone networks.
arXiv Detail & Related papers (2021-03-22T20:36:34Z) - Tracking Performance of Online Stochastic Learners [57.14673504239551]
Online algorithms are popular in large-scale learning settings due to their ability to compute updates on the fly, without the need to store and process data in large batches.
When a constant step-size is used, these algorithms also have the ability to adapt to drifts in problem parameters, such as data or model properties, and track the optimal solution with reasonable accuracy.
We establish a link between steady-state performance derived under stationarity assumptions and the tracking performance of online learners under random walk models.
arXiv Detail & Related papers (2020-04-04T14:16:27Z) - Learning to Optimize Non-Rigid Tracking [54.94145312763044]
We employ learnable optimizations to improve robustness and speed up solver convergence.
First, we upgrade the tracking objective by integrating an alignment data term on deep features which are learned end-to-end through CNN.
Second, we bridge the gap between the preconditioning technique and learning method by introducing a ConditionNet which is trained to generate a preconditioner.
arXiv Detail & Related papers (2020-03-27T04:40:57Z) - Improving Sampling Accuracy of Stochastic Gradient MCMC Methods via
Non-uniform Subsampling of Gradients [54.90670513852325]
We propose a non-uniform subsampling scheme to improve the sampling accuracy.
EWSG is designed so that a non-uniform gradient-MCMC method mimics the statistical behavior of a batch-gradient-MCMC method.
In our practical implementation of EWSG, the non-uniform subsampling is performed efficiently via a Metropolis-Hastings chain on the data index.
arXiv Detail & Related papers (2020-02-20T18:56:18Z) - Integration of Regularized l1 Tracking and Instance Segmentation for
Video Object Tracking [1.90365714903665]
We introduce a tracking-by-detection method that integrates a deep object detector with a particle filter tracker.
A novel observation model which establishes consensus between the detector and tracker is formulated.
We propose a new state vector consisting of translation, rotation, scaling and shearing parameters that allows tracking the deformed object bounding boxes.
arXiv Detail & Related papers (2019-12-30T11:14:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.