BlowPrint: Blow-Based Multi-Factor Biometrics for Smartphone User Authentication
- URL: http://arxiv.org/abs/2507.04126v1
- Date: Sat, 05 Jul 2025 18:40:32 GMT
- Title: BlowPrint: Blow-Based Multi-Factor Biometrics for Smartphone User Authentication
- Authors: Howard Halim, Eyasu Getahun Chekole, Daniƫl Reijsbergen, Jianying Zhou,
- Abstract summary: We propose BlowPrint, a novel behavioral biometric technique that allows us to authenticate users based on their phone blowing behaviors.<n>In this work, we assume that the way users blow on a phone screen can produce distinctive acoustic patterns, which can serve as a unique biometric identifier.<n>To assess BlowPrint's effectiveness, we conduct an empirical study involving 50 participants from whom we collect blow-acoustic and facial feature data.
- Score: 3.5860522669070454
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Biometric authentication is a widely used security mechanism that leverages unique physiological or behavioral characteristics to authenticate users. In multi-factor biometrics (MFB), multiple biometric modalities, e.g., physiological and behavioral, are integrated to mitigate the limitations inherent in single-factor biometrics. The main challenge in MFB lies in identifying novel behavioral techniques capable of meeting critical criteria, including high accuracy, high usability, non-invasiveness, resilience against spoofing attacks, and low use of computational resources. Despite ongoing advancements, current behavioral biometric techniques often fall short of fulfilling one or more of these requirements. In this work, we propose BlowPrint, a novel behavioral biometric technique that allows us to authenticate users based on their phone blowing behaviors. In brief, we assume that the way users blow on a phone screen can produce distinctive acoustic patterns, which can serve as a unique biometric identifier for effective user authentication. It can also be seamlessly integrated with physiological techniques, such as facial recognition, to enhance its robustness and security. To assess BlowPrint's effectiveness, we conduct an empirical study involving 50 participants from whom we collect blow-acoustic and facial feature data. Subsequently, we compute the similarity scores of the two modalities using various similarity algorithms and combine them through score-level fusion. Finally, we compute the accuracy using a machine learning-based classifier. As a result, the proposed method demonstrates an accuracy of 99.35% for blow acoustics, 99.96% for facial recognition, and 99.82% for the combined approach. The experimental results demonstrate BlowPrint's high effectiveness in terms of authentication accuracy, spoofing attack resilience, usability, non-invasiveness, and other aspects.
Related papers
- ZK-SERIES: Privacy-Preserving Authentication using Temporal Biometric Data [2.4985925375157443]
We propose ZK-SERIES to provide privacy and efficiency to a broad spectrum of time series-based authentication protocols.<n>ZK-SERIES uses the same building blocks, i.e., zero-knowledge multiplication proofs and efficiently batched range proofs.<n>Our experimental results indicate that the privacy-preserving authentication protocol can be completed within 1.3 seconds on older devices.
arXiv Detail & Related papers (2025-06-24T07:45:43Z) - Biometrics Employing Neural Network [0.0]
Fingerprints, iris and retina patterns, facial recognition, hand shapes, palm prints, and voice recognition are frequently used forms of biometrics.
For systems to be effective and widely accepted, the error rate in recognition and verification must approach zero.
Artificial Neural Networks, which simulate the human brain's operations, present themselves as a promising approach.
arXiv Detail & Related papers (2024-02-01T03:59:04Z) - Unrecognizable Yet Identifiable: Image Distortion with Preserved Embeddings [22.338328674283062]
We introduce an innovative image transformation technique that renders facial images unrecognizable to the eye while maintaining their identifiability by neural network models.
The proposed methodology can be used in various artificial intelligence applications to distort the visual data and keep the derived features close.
We show that it is possible to build the distortion that changes the image content by more than 70% while maintaining the same recognition accuracy.
arXiv Detail & Related papers (2024-01-26T18:20:53Z) - User authentication system based on human exhaled breath physics [0.21847754147782888]
This work attempts to build a biometric system that works purely based on the fluid mechanics governing exhaled breath.
We test the hypothesis that the structure of turbulence in exhaled human breath can be exploited to build biometric algorithms.
arXiv Detail & Related papers (2024-01-02T19:36:13Z) - Multi-Channel Time-Series Person and Soft-Biometric Identification [65.83256210066787]
This work investigates person and soft-biometrics identification from recordings of humans performing different activities using deep architectures.
We evaluate the method on four datasets of multi-channel time-series human activity recognition (HAR)
Soft-biometric based attribute representation shows promising results and emphasis the necessity of larger datasets.
arXiv Detail & Related papers (2023-04-04T07:24:51Z) - Fingerprint Image-Quality Estimation and its Application to
Multialgorithm Verification [56.128200319868526]
Signal-quality awareness has been found to increase recognition rates and to support decisions in multisensor environments significantly.
Here, we study the orientation tensor of fingerprint images to quantify signal impairments, such as noise, lack of structure, blur, with the help of symmetry descriptors.
The quantitative results favor quality awareness under all aspects, boosting recognition rates and fusing differently skilled experts efficiently as well as effectively.
arXiv Detail & Related papers (2022-11-24T12:17:49Z) - Facial Soft Biometrics for Recognition in the Wild: Recent Works,
Annotation, and COTS Evaluation [63.05890836038913]
We study the role of soft biometrics to enhance person recognition systems in unconstrained scenarios.
We consider two assumptions: 1) manual estimation of soft biometrics and 2) automatic estimation from two commercial off-the-shelf systems.
Experiments are carried out fusing soft biometrics with two state-of-the-art face recognition systems based on deep learning.
arXiv Detail & Related papers (2022-10-24T11:29:57Z) - Towards Intrinsic Common Discriminative Features Learning for Face
Forgery Detection using Adversarial Learning [59.548960057358435]
We propose a novel method which utilizes adversarial learning to eliminate the negative effect of different forgery methods and facial identities.
Our face forgery detection model learns to extract common discriminative features through eliminating the effect of forgery methods and facial identities.
arXiv Detail & Related papers (2022-07-08T09:23:59Z) - Evaluation of a User Authentication Schema Using Behavioral Biometrics
and Machine Learning [0.0]
This study contributes to the research being done on behavioral biometrics by creating and evaluating a user authentication scheme using behavioral biometrics.
The behavioral biometrics used in this study include touch dynamics and phone movement.
We evaluate the performance of different single-modal and multi-modal combinations of the two biometrics.
arXiv Detail & Related papers (2022-05-07T05:16:34Z) - Mobile Behavioral Biometrics for Passive Authentication [65.94403066225384]
This work carries out a comparative analysis of unimodal and multimodal behavioral biometric traits.
Experiments are performed over HuMIdb, one of the largest and most comprehensive freely available mobile user interaction databases.
In our experiments, the most discriminative background sensor is the magnetometer, whereas among touch tasks the best results are achieved with keystroke.
arXiv Detail & Related papers (2022-03-14T17:05:59Z) - Benchmarking Quality-Dependent and Cost-Sensitive Score-Level Multimodal
Biometric Fusion Algorithms [58.156733807470395]
This paper reports a benchmarking study carried out within the framework of the BioSecure DS2 (Access Control) evaluation campaign.
The campaign targeted the application of physical access control in a medium-size establishment with some 500 persons.
To the best of our knowledge, this is the first attempt to benchmark quality-based multimodal fusion algorithms.
arXiv Detail & Related papers (2021-11-17T13:39:48Z) - Data-driven behavioural biometrics for continuous and adaptive user
verification using Smartphone and Smartwatch [0.0]
We propose an algorithm to blend behavioural biometrics with multi-factor authentication (MFA)
This work proposes a two-step user verification algorithm that verifies the user's identity using motion-based biometrics.
arXiv Detail & Related papers (2021-10-07T02:46:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.