MPQ-DMv2: Flexible Residual Mixed Precision Quantization for Low-Bit Diffusion Models with Temporal Distillation
- URL: http://arxiv.org/abs/2507.04290v1
- Date: Sun, 06 Jul 2025 08:16:50 GMT
- Title: MPQ-DMv2: Flexible Residual Mixed Precision Quantization for Low-Bit Diffusion Models with Temporal Distillation
- Authors: Weilun Feng, Chuanguang Yang, Haotong Qin, Yuqi Li, Xiangqi Li, Zhulin An, Libo Huang, Boyu Diao, Fuzhen Zhuang, Michele Magno, Yongjun Xu, Yingli Tian, Tingwen Huang,
- Abstract summary: We present MPQ-DMv2, an improved textbfMixed textbfPrecision textbfQuantization framework for extremely low-bit textbfDiffusion textbfModels.
- Score: 74.34220141721231
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Diffusion models have demonstrated remarkable performance on vision generation tasks. However, the high computational complexity hinders its wide application on edge devices. Quantization has emerged as a promising technique for inference acceleration and memory reduction. However, existing quantization methods do not generalize well under extremely low-bit (2-4 bit) quantization. Directly applying these methods will cause severe performance degradation. We identify that the existing quantization framework suffers from the outlier-unfriendly quantizer design, suboptimal initialization, and optimization strategy. We present MPQ-DMv2, an improved \textbf{M}ixed \textbf{P}recision \textbf{Q}uantization framework for extremely low-bit \textbf{D}iffusion \textbf{M}odels. For the quantization perspective, the imbalanced distribution caused by salient outliers is quantization-unfriendly for uniform quantizer. We propose \textit{Flexible Z-Order Residual Mixed Quantization} that utilizes an efficient binary residual branch for flexible quant steps to handle salient error. For the optimization framework, we theoretically analyzed the convergence and optimality of the LoRA module and propose \textit{Object-Oriented Low-Rank Initialization} to use prior quantization error for informative initialization. We then propose \textit{Memory-based Temporal Relation Distillation} to construct an online time-aware pixel queue for long-term denoising temporal information distillation, which ensures the overall temporal consistency between quantized and full-precision model. Comprehensive experiments on various generation tasks show that our MPQ-DMv2 surpasses current SOTA methods by a great margin on different architectures, especially under extremely low-bit widths.
Related papers
- LRQ-DiT: Log-Rotation Post-Training Quantization of Diffusion Transformers for Text-to-Image Generation [34.14174796390669]
Post-training quantization (PTQ) is a promising solution to reduce memory usage and accelerate inference.<n>Existing PTQ methods suffer from severe performance degradation under extreme low-bit settings.<n>We propose LRQ-DiT, an efficient and accurate PTQ framework.
arXiv Detail & Related papers (2025-08-05T14:16:11Z) - FIMA-Q: Post-Training Quantization for Vision Transformers by Fisher Information Matrix Approximation [55.12070409045766]
Post-training quantization (PTQ) has stood out as a cost-effective and promising model compression paradigm in recent years.<n>Current PTQ methods for Vision Transformers (ViTs) still suffer from significant accuracy degradation, especially under low-bit quantization.
arXiv Detail & Related papers (2025-06-13T07:57:38Z) - MPQ-DM: Mixed Precision Quantization for Extremely Low Bit Diffusion Models [37.061975191553]
This paper presents MPQ-DM, a Mixed-Precision Quantization method for Diffusion Models.<n>To mitigate the quantization error caused by outlier severe weight channels, we propose an Outlier-Driven Mixed Quantization technique.<n>To robustly learn representations crossing time steps, we construct a Time-Smoothed Relation Distillation scheme.
arXiv Detail & Related papers (2024-12-16T08:31:55Z) - Efficiency Meets Fidelity: A Novel Quantization Framework for Stable Diffusion [9.402892455344677]
We propose an efficient quantization framework for Stable Diffusion models (SDM)<n>Our framework simultaneously maintains training-inference consistency and ensures optimization stability.<n>Our method demonstrates superior performance over state-of-the-art approaches with shorter training times.
arXiv Detail & Related papers (2024-12-09T17:00:20Z) - PassionSR: Post-Training Quantization with Adaptive Scale in One-Step Diffusion based Image Super-Resolution [95.98801201266099]
Diffusion-based image super-resolution (SR) models have shown superior performance at the cost of multiple denoising steps.<n>We propose a novel post-training quantization approach with adaptive scale in one-step diffusion (OSD) image SR, PassionSR.<n>Our PassionSR achieves significant advantages over recent leading low-bit quantization methods for image SR.
arXiv Detail & Related papers (2024-11-26T04:49:42Z) - QSpec: Speculative Decoding with Complementary Quantization Schemes [37.007621357142725]
Quantization has been substantially adopted to accelerate inference and reduce memory consumption of large language models.<n>We propose a novel quantization paradigm called QSPEC, which seamlessly integrates two complementary quantization schemes for speculative decoding.
arXiv Detail & Related papers (2024-10-15T05:57:51Z) - Temporal Feature Matters: A Framework for Diffusion Model Quantization [105.3033493564844]
Diffusion models rely on the time-step for the multi-round denoising.<n>We introduce a novel quantization framework that includes three strategies.<n>This framework preserves most of the temporal information and ensures high-quality end-to-end generation.
arXiv Detail & Related papers (2024-07-28T17:46:15Z) - 2DQuant: Low-bit Post-Training Quantization for Image Super-Resolution [83.09117439860607]
Low-bit quantization has become widespread for compressing image super-resolution (SR) models for edge deployment.
It is notorious that low-bit quantization degrades the accuracy of SR models compared to their full-precision (FP) counterparts.
We present a dual-stage low-bit post-training quantization (PTQ) method for image super-resolution, namely 2DQuant, which achieves efficient and accurate SR under low-bit quantization.
arXiv Detail & Related papers (2024-06-10T06:06:11Z) - TMPQ-DM: Joint Timestep Reduction and Quantization Precision Selection for Efficient Diffusion Models [40.5153344875351]
We introduce TMPQ-DM, which jointly optimize timestep reduction and quantization to achieve a superior performance-efficiency trade-off.
For timestep reduction, we devise a non-uniform grouping scheme tailored to the non-uniform nature of the denoising process.
In terms of quantization, we adopt a fine-grained layer-wise approach to allocate varying bit-widths to different layers based on their respective contributions to the final generative performance.
arXiv Detail & Related papers (2024-04-15T07:51:40Z) - TFMQ-DM: Temporal Feature Maintenance Quantization for Diffusion Models [52.454274602380124]
Diffusion models heavily depend on the time-step $t$ to achieve satisfactory multi-round denoising.
We propose a Temporal Feature Maintenance Quantization (TFMQ) framework building upon a Temporal Information Block.
Powered by the pioneering block design, we devise temporal information aware reconstruction (TIAR) and finite set calibration (FSC) to align the full-precision temporal features.
arXiv Detail & Related papers (2023-11-27T12:59:52Z) - SqueezeLLM: Dense-and-Sparse Quantization [80.32162537942138]
Main bottleneck for generative inference with LLMs is memory bandwidth, rather than compute, for single batch inference.
We introduce SqueezeLLM, a post-training quantization framework that enables lossless compression to ultra-low precisions of up to 3-bit.
Our framework incorporates two novel ideas: (i) sensitivity-based non-uniform quantization, which searches for the optimal bit precision assignment based on second-order information; and (ii) the Dense-and-Sparse decomposition that stores outliers and sensitive weight values in an efficient sparse format.
arXiv Detail & Related papers (2023-06-13T08:57:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.