MOMENTS: A Comprehensive Multimodal Benchmark for Theory of Mind
- URL: http://arxiv.org/abs/2507.04415v1
- Date: Sun, 06 Jul 2025 15:06:30 GMT
- Title: MOMENTS: A Comprehensive Multimodal Benchmark for Theory of Mind
- Authors: Emilio Villa-Cueva, S M Masrur Ahmed, Rendi Chevi, Jan Christian Blaise Cruz, Kareem Elzeky, Fermin Cristobal, Alham Fikri Aji, Skyler Wang, Rada Mihalcea, Thamar Solorio,
- Abstract summary: Theory of Mind is essential for building socially intelligent multimodal agents.<n>We introduce MOMENTS, a benchmark designed to assess the ToM capabilities of multimodal large language models.
- Score: 28.25540132218273
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Understanding Theory of Mind is essential for building socially intelligent multimodal agents capable of perceiving and interpreting human behavior. We introduce MOMENTS (Multimodal Mental States), a comprehensive benchmark designed to assess the ToM capabilities of multimodal large language models (LLMs) through realistic, narrative-rich scenarios presented in short films. MOMENTS includes over 2,344 multiple-choice questions spanning seven distinct ToM categories. The benchmark features long video context windows and realistic social interactions that provide deeper insight into characters' mental states. While the visual modality generally enhances model performance, current systems still struggle to integrate it effectively, underscoring the need for further research into AI's multimodal understanding of human behavior.
Related papers
- Understand, Think, and Answer: Advancing Visual Reasoning with Large Multimodal Models [26.14137626882127]
Large Multimodal Models (LMMs) have recently demonstrated remarkable visual understanding performance on both vision-language and vision-centric tasks.<n>We present a unified visual reasoning mechanism that enables LMMs to solve complicated compositional problems.<n>Our trained model, Griffon-R, has the ability of end-to-end automatic understanding, self-thinking, and reasoning answers.
arXiv Detail & Related papers (2025-05-27T05:50:25Z) - Can MLLMs Reason in Multimodality? EMMA: An Enhanced MultiModal ReAsoning Benchmark [73.27104042215207]
We introduce EMMA, a benchmark targeting organic multimodal reasoning across mathematics, physics, chemistry, and coding.<n>EMMA tasks demand advanced cross-modal reasoning that cannot be addressed by reasoning independently in each modality.<n>Our evaluation of state-of-the-art MLLMs on EMMA reveals significant limitations in handling complex multimodal and multi-step reasoning tasks.
arXiv Detail & Related papers (2025-01-09T18:55:52Z) - HumanVBench: Exploring Human-Centric Video Understanding Capabilities of MLLMs with Synthetic Benchmark Data [55.739633494946204]
We present HumanVBench, an innovative benchmark meticulously crafted to bridge gaps in the evaluation of video MLLMs.<n>HumanVBench comprises 16 carefully designed tasks that explore two primary dimensions: inner emotion and outer manifestations, spanning static and dynamic, basic and complex, as well as single-modal and cross-modal aspects.<n>A comprehensive evaluation across 22 SOTA video MLLMs reveals notable limitations in current performance, especially in cross-modal and emotion perception.
arXiv Detail & Related papers (2024-12-23T13:45:56Z) - CoMT: A Novel Benchmark for Chain of Multi-modal Thought on Large Vision-Language Models [60.08485416687596]
Chain of Multi-modal Thought (CoMT) benchmark aims to mimic human-like reasoning that inherently integrates visual operation.<n>We evaluate various LVLMs and strategies on CoMT, revealing some key insights into the capabilities and limitations of the current approaches.
arXiv Detail & Related papers (2024-12-17T14:10:16Z) - Visual-O1: Understanding Ambiguous Instructions via Multi-modal Multi-turn Chain-of-thoughts Reasoning [53.45295657891099]
This paper proposes Visual-O1, a multi-modal multi-turn chain-of-thought reasoning framework.
It simulates human multi-modal multi-turn reasoning, providing instantial experience for highly intelligent models.
Our work highlights the potential of artificial intelligence to work like humans in real-world scenarios with uncertainty and ambiguity.
arXiv Detail & Related papers (2024-10-04T11:18:41Z) - MuMA-ToM: Multi-modal Multi-Agent Theory of Mind [10.079620078670589]
We introduce MuMA-ToM, a Multi-modal Multi-Agent Theory of Mind benchmark.<n>We provide video and text descriptions of people's multi-modal behavior in realistic household environments.<n>We then ask questions about people's goals, beliefs, and beliefs about others' goals.
arXiv Detail & Related papers (2024-08-22T17:41:45Z) - SoMeLVLM: A Large Vision Language Model for Social Media Processing [78.47310657638567]
We introduce a Large Vision Language Model for Social Media Processing (SoMeLVLM)
SoMeLVLM is a cognitive framework equipped with five key capabilities including knowledge & comprehension, application, analysis, evaluation, and creation.
Our experiments demonstrate that SoMeLVLM achieves state-of-the-art performance in multiple social media tasks.
arXiv Detail & Related papers (2024-02-20T14:02:45Z) - MMToM-QA: Multimodal Theory of Mind Question Answering [80.87550820953236]
Theory of Mind (ToM) is an essential ingredient for developing machines with human-level social intelligence.
Recent machine learning models, particularly large language models, seem to show some aspects of ToM understanding.
Human ToM, on the other hand, is more than video or text understanding.
People can flexibly reason about another person's mind based on conceptual representations extracted from any available data.
arXiv Detail & Related papers (2024-01-16T18:59:24Z) - M2Lens: Visualizing and Explaining Multimodal Models for Sentiment
Analysis [28.958168542624062]
We present an interactive visual analytics system, M2Lens, to visualize and explain multimodal models for sentiment analysis.
M2Lens provides explanations on intra- and inter-modal interactions at the global, subset, and local levels.
arXiv Detail & Related papers (2021-07-17T15:54:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.