Hybrid Adversarial Spectral Loss Conditional Generative Adversarial Networks for Signal Data Augmentation in Ultra-precision Machining Surface Roughness Prediction
- URL: http://arxiv.org/abs/2507.04665v1
- Date: Mon, 07 Jul 2025 05:10:46 GMT
- Title: Hybrid Adversarial Spectral Loss Conditional Generative Adversarial Networks for Signal Data Augmentation in Ultra-precision Machining Surface Roughness Prediction
- Authors: Suiyan Shang, Chi Fai Cheung, Pai Zheng,
- Abstract summary: We propose HAS-CGAN, a Hybrid Adversarial Spectral Loss CGAN, for effective UPM data augmentation.<n>Hass-CGAN excels in 1D force signal generation, particularly for high-frequency signals.<n>Experiments with traditional ML (SVR, RF, LSTM) and deep learning models (BPNN, 1DCNN, CNN-Transformer) demonstrate that augmenting training data with 520+ synthetic samples reduces prediction error from 31.4% to 9%.
- Score: 2.635385344076311
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Accurate surface roughness prediction in ultra-precision machining (UPM) is critical for real-time quality control, but small datasets hinder model performance. We propose HAS-CGAN, a Hybrid Adversarial Spectral Loss CGAN, for effective UPM data augmentation. Among five CGAN variants tested, HAS-CGAN excels in 1D force signal generation, particularly for high-frequency signals, achieving >0.85 wavelet coherence through Fourier-domain optimization. By combining generated signals with machining parameters, prediction accuracy significantly improves. Experiments with traditional ML (SVR, RF, LSTM) and deep learning models (BPNN, 1DCNN, CNN-Transformer) demonstrate that augmenting training data with 520+ synthetic samples reduces prediction error from 31.4% (original 52 samples) to ~9%, effectively addressing data scarcity in UPM roughness prediction."
Related papers
- Efficient Federated Learning with Heterogeneous Data and Adaptive Dropout [62.73150122809138]
Federated Learning (FL) is a promising distributed machine learning approach that enables collaborative training of a global model using multiple edge devices.<n>We propose the FedDHAD FL framework, which comes with two novel methods: Dynamic Heterogeneous model aggregation (FedDH) and Adaptive Dropout (FedAD)<n>The combination of these two methods makes FedDHAD significantly outperform state-of-the-art solutions in terms of accuracy (up to 6.7% higher), efficiency (up to 2.02 times faster), and cost (up to 15.0% smaller)
arXiv Detail & Related papers (2025-07-14T16:19:00Z) - Zero-shot generation of synthetic neurosurgical data with large language models [0.7373617024876725]
This study aims to evaluate the capability of zero-shot generation of synthetic neurosurgical data with a large language model (LLM), GPT-4o.<n>Data synthesized with GPT-4o can effectively augment clinical data with small sample sizes, and train ML models for prediction of neurosurgical outcomes.
arXiv Detail & Related papers (2025-02-13T18:21:15Z) - Dynamic Noise Preference Optimization for LLM Self-Improvement via Synthetic Data [51.62162460809116]
We introduce Dynamic Noise Preference Optimization (DNPO) to ensure consistent improvements across iterations.<n>In experiments with Zephyr-7B, DNPO consistently outperforms existing methods, showing an average performance boost of 2.6%.<n> DNPO shows a significant improvement in model-generated data quality, with a 29.4% win-loss rate gap compared to the baseline in GPT-4 evaluations.
arXiv Detail & Related papers (2025-02-08T01:20:09Z) - An Investigation on Machine Learning Predictive Accuracy Improvement and Uncertainty Reduction using VAE-based Data Augmentation [2.517043342442487]
Deep generative learning uses certain ML models to learn the underlying distribution of existing data and generate synthetic samples that resemble the real data.
In this study, our objective is to evaluate the effectiveness of data augmentation using variational autoencoder (VAE)-based deep generative models.
We investigated whether the data augmentation leads to improved accuracy in the predictions of a deep neural network (DNN) model trained using the augmented data.
arXiv Detail & Related papers (2024-10-24T18:15:48Z) - Hybrid Deep Convolutional Neural Networks Combined with Autoencoders And Augmented Data To Predict The Look-Up Table 2006 [2.082445711353476]
This study explores the development of a hybrid deep convolutional neural network (DCNN) model enhanced by autoencoders and data augmentation techniques.
By augmenting the original input features using three different autoencoder configurations, the model's predictive capabilities were significantly improved.
arXiv Detail & Related papers (2024-08-26T20:45:07Z) - STAL: Spike Threshold Adaptive Learning Encoder for Classification of Pain-Related Biosignal Data [2.0738462952016232]
This paper presents the first application of spiking neural networks (SNNs) for the classification of chronic lower back pain (CLBP) using the EmoPain dataset.
We introduce Spike Threshold Adaptive Learning (STAL), a trainable encoder that effectively converts continuous biosignals into spike trains.
We also propose an ensemble of Spiking Recurrent Neural Network (SRNN) classifiers for the multi-stream processing of sEMG and IMU data.
arXiv Detail & Related papers (2024-07-11T10:15:52Z) - The effect of data augmentation and 3D-CNN depth on Alzheimer's Disease
detection [51.697248252191265]
This work summarizes and strictly observes best practices regarding data handling, experimental design, and model evaluation.
We focus on Alzheimer's Disease (AD) detection, which serves as a paradigmatic example of challenging problem in healthcare.
Within this framework, we train predictive 15 models, considering three different data augmentation strategies and five distinct 3D CNN architectures.
arXiv Detail & Related papers (2023-09-13T10:40:41Z) - Clinical Deterioration Prediction in Brazilian Hospitals Based on
Artificial Neural Networks and Tree Decision Models [56.93322937189087]
An extremely boosted neural network (XBNet) is used to predict clinical deterioration (CD)
The XGBoost model obtained the best results in predicting CD among Brazilian hospitals' data.
arXiv Detail & Related papers (2022-12-17T23:29:14Z) - Decision Forest Based EMG Signal Classification with Low Volume Dataset
Augmented with Random Variance Gaussian Noise [51.76329821186873]
We produce a model that can classify six different hand gestures with a limited number of samples that generalizes well to a wider audience.
We appeal to a set of more elementary methods such as the use of random bounds on a signal, but desire to show the power these methods can carry in an online setting.
arXiv Detail & Related papers (2022-06-29T23:22:18Z) - Quaternion Factorization Machines: A Lightweight Solution to Intricate
Feature Interaction Modelling [76.89779231460193]
factorization machine (FM) is capable of automatically learning high-order interactions among features to make predictions without the need for manual feature engineering.
We propose the quaternion factorization machine (QFM) and quaternion neural factorization machine (QNFM) for sparse predictive analytics.
arXiv Detail & Related papers (2021-04-05T00:02:36Z) - A Generative Model to Synthesize EEG Data for Epileptic Seizure
Prediction [3.8271082752302137]
This paper proposes a deep convolutional generative adversarial network to generate synthetic EEG samples.
We use two methods to validate synthesized data namely, one-class SVM and a new proposal which we refer to as convolutional epileptic seizure predictor (CESP)
Our results show that CESP model achieves sensitivity of 78.11% and 88.21%, and FPR of 0.27/h and 0.14/h for training on synthesized data.
arXiv Detail & Related papers (2020-12-01T12:00:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.