TeethGenerator: A two-stage framework for paired pre- and post-orthodontic 3D dental data generation
- URL: http://arxiv.org/abs/2507.04685v1
- Date: Mon, 07 Jul 2025 06:08:10 GMT
- Title: TeethGenerator: A two-stage framework for paired pre- and post-orthodontic 3D dental data generation
- Authors: Changsong Lei, Yaqian Liang, Shaofeng Wang, Jiajia Dai, Yong-Jin Liu,
- Abstract summary: TeethGenerator is a novel framework designed to synthesize paired 3D teeth models pre- and post-orthodontic.<n>Our dataset aligns closely with the distribution of real orthodontic data, and promotes tooth alignment performance significantly when combined with real data for training.
- Score: 21.06723804953803
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Digital orthodontics represents a prominent and critical application of computer vision technology in the medical field. So far, the labor-intensive process of collecting clinical data, particularly in acquiring paired 3D orthodontic teeth models, constitutes a crucial bottleneck for developing tooth arrangement neural networks. Although numerous general 3D shape generation methods have been proposed, most of them focus on single-object generation and are insufficient for generating anatomically structured teeth models, each comprising 24-32 segmented teeth. In this paper, we propose TeethGenerator, a novel two-stage framework designed to synthesize paired 3D teeth models pre- and post-orthodontic, aiming to facilitate the training of downstream tooth arrangement networks. Specifically, our approach consists of two key modules: (1) a teeth shape generation module that leverages a diffusion model to learn the distribution of morphological characteristics of teeth, enabling the generation of diverse post-orthodontic teeth models; and (2) a teeth style generation module that synthesizes corresponding pre-orthodontic teeth models by incorporating desired styles as conditional inputs. Extensive qualitative and quantitative experiments demonstrate that our synthetic dataset aligns closely with the distribution of real orthodontic data, and promotes tooth alignment performance significantly when combined with real data for training. The code and dataset are available at https://github.com/lcshhh/teeth_generator.
Related papers
- ToothForge: Automatic Dental Shape Generation using Synchronized Spectral Embeddings [0.4799822253865054]
ToothForge is a spectral approach for automatically generating novel 3D teeth.<n> generating shape spectra comes with the instability of the decomposed harmonics.<n> synchronized modeling removes the limiting factor imposed by previous methods.
arXiv Detail & Related papers (2025-06-03T09:56:22Z) - Automatic Tooth Arrangement with Joint Features of Point and Mesh
Representations via Diffusion Probabilistic Models [33.75061391364549]
Tooth arrangement is a crucial step in orthodontics treatment, in which aligning teeth could improve overall well-being, enhance facial aesthetics, and boost self-confidence.
To improve the efficiency of tooth arrangement and minimize errors associated with unreasonable designs by inexperienced practitioners, some deep learning-based tooth arrangement methods have been proposed.
arXiv Detail & Related papers (2023-12-23T02:27:15Z) - 3D Structure-guided Network for Tooth Alignment in 2D Photograph [47.51314162367702]
A 2D photograph depicting aligned teeth prior to orthodontic treatment is crucial for effective dentist-patient communication.
We propose a 3D structure-guided tooth alignment network that takes 2D photographs as input and aligns the teeth within the 2D image space.
We evaluate our network on various facial photographs, demonstrating its exceptional performance and strong applicability within the orthodontic industry.
arXiv Detail & Related papers (2023-10-17T09:44:30Z) - YOLOrtho -- A Unified Framework for Teeth Enumeration and Dental Disease
Detection [4.136033167469768]
YOLOrtho is a unified framework for teeth enumeration and dental disease detection.
We develop our model on Dentex Challenge 2023 data, which consists of three distinct types of annotated data.
To fully utilize the data and learn both teeth detection and disease identification simultaneously, we formulate diseases as attributes attached to their corresponding teeth.
arXiv Detail & Related papers (2023-08-11T06:54:55Z) - Accurate 3D Prediction of Missing Teeth in Diverse Patterns for Precise
Dental Implant Planning [44.20366627432732]
This study presents a novel framework for accurate prediction of missing teeth in different patterns, facilitating digital implant planning.
The proposed framework begins by estimating point-to-point correspondence among a dataset of dental mesh models reconstructed from CBCT images of healthy subjects.
tooth dictionaries are constructed for each tooth type, encoding their position and shape information based on the established point-to-point correspondence.
arXiv Detail & Related papers (2023-07-16T05:52:37Z) - Construction of unbiased dental template and parametric dental model for
precision digital dentistry [46.459289444783956]
We develop an unbiased dental template by constructing an accurate dental atlas from CBCT images with guidance of teeth segmentation.
A total of 159 CBCT images of real subjects are collected to perform the constructions.
arXiv Detail & Related papers (2023-04-07T09:39:03Z) - An Implicit Parametric Morphable Dental Model [79.29420177904022]
We present the first parametric 3D morphable dental model for both teeth and gum.
It is based on a component-wise representation for each tooth and the gum, together with a learnable latent code for each of such components.
Our reconstruction quality is on par with the most advanced global implicit representations while enabling novel applications.
arXiv Detail & Related papers (2022-11-21T12:23:54Z) - Dense Representative Tooth Landmark/axis Detection Network on 3D Model [32.81858923141152]
We propose a deep learning approach with a labeled dataset by professional dentists to the tooth landmark/axis detection on tooth model.
Our method can extract not only tooth landmarks in the form of point (e.g. cusps) but also axes that measure the tooth angulation and inclination.
The proposed network takes as input a 3D tooth model and predicts various types of the tooth landmarks and axes.
arXiv Detail & Related papers (2021-11-08T00:42:22Z) - Two-Stage Mesh Deep Learning for Automated Tooth Segmentation and
Landmark Localization on 3D Intraoral Scans [56.55092443401416]
emphiMeshSegNet in the first stage of TS-MDL reached an averaged Dice similarity coefficient (DSC) at 0.953pm0.076$, significantly outperforming the original MeshSegNet.
PointNet-Reg achieved a mean absolute error (MAE) of $0.623pm0.718, mm$ in distances between the prediction and ground truth for $44$ landmarks, which is superior compared with other networks for landmark detection.
arXiv Detail & Related papers (2021-09-24T13:00:26Z) - TSGCNet: Discriminative Geometric Feature Learning with Two-Stream
GraphConvolutional Network for 3D Dental Model Segmentation [141.2690520327948]
We propose a two-stream graph convolutional network (TSGCNet) to learn multi-view information from different geometric attributes.
We evaluate our proposed TSGCNet on a real-patient dataset of dental models acquired by 3D intraoral scanners.
arXiv Detail & Related papers (2020-12-26T08:02:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.