XiYan-SQL: A Novel Multi-Generator Framework For Text-to-SQL
- URL: http://arxiv.org/abs/2507.04701v1
- Date: Mon, 07 Jul 2025 06:50:46 GMT
- Title: XiYan-SQL: A Novel Multi-Generator Framework For Text-to-SQL
- Authors: Yifu Liu, Yin Zhu, Yingqi Gao, Zhiling Luo, Xiaoxia Li, Xiaorong Shi, Yuntao Hong, Jinyang Gao, Yu Li, Bolin Ding, Jingren Zhou,
- Abstract summary: We present XiYan-, an innovative framework effectively generating and utilizing multiplesql candidates.<n>Overall, XiYan- achieves a new SOTA performance of 75.63% on the notable BIRD benchmark.<n>It also attains SOTA performance on the Spider test set with an accuracy of 89.65%.
- Score: 48.45491386478092
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: To leverage the advantages of LLM in addressing challenges in the Text-to-SQL task, we present XiYan-SQL, an innovative framework effectively generating and utilizing multiple SQL candidates. It consists of three components: 1) a Schema Filter module filtering and obtaining multiple relevant schemas; 2) a multi-generator ensemble approach generating multiple highquality and diverse SQL queries; 3) a selection model with a candidate reorganization strategy implemented to obtain the optimal SQL query. Specifically, for the multi-generator ensemble, we employ a multi-task fine-tuning strategy to enhance the capabilities of SQL generation models for the intrinsic alignment between SQL and text, and construct multiple generation models with distinct generation styles by fine-tuning across different SQL formats. The experimental results and comprehensive analysis demonstrate the effectiveness and robustness of our framework. Overall, XiYan-SQL achieves a new SOTA performance of 75.63% on the notable BIRD benchmark, surpassing all previous methods. It also attains SOTA performance on the Spider test set with an accuracy of 89.65%.
Related papers
- OpenSearch-SQL: Enhancing Text-to-SQL with Dynamic Few-shot and Consistency Alignment [6.2089733671434875]
We propose OpenSearch-, which divides the Text-to-agent task into four main modules: Preprocessing, Extraction, Generation, and Refinement, along with an Alignment module based on consistency alignment mechanism.<n>These methods have significantly improved the performance of LLMs in the Text-to-agent task.<n> Experimental results show that OpenSearch- achieves an execution accuracy(EX) of 69.3% on the BIRD development set, 72.28% on the test set, and a reward-based efficiency score (R-VES) of 69.3, with all three metrics ranking first at the time of submission.
arXiv Detail & Related papers (2025-02-19T07:51:50Z) - A Preview of XiYan-SQL: A Multi-Generator Ensemble Framework for Text-to-SQL [20.010431872384714]
We introduce XiYan, an innovative framework that employs a multi-context ensemble strategy to improve candidate generation.<n>We introduce M- schema, a semi-structured representation method designed to enhance the understanding of database structures.<n>Overall, our proposed XiYan-the-art framework achieves the state-of-the-art execution accuracy of 75.63% on Bird datasets benchmark.
arXiv Detail & Related papers (2024-11-13T13:30:21Z) - RSL-SQL: Robust Schema Linking in Text-to-SQL Generation [51.00761167842468]
We propose a novel framework called RSL- that combines bidirectional schema linking, contextual information augmentation, binary selection strategy, and multi-turn self-correction.
benchmarks demonstrate that our approach achieves SOTA execution accuracy among open-source solutions, with 67.2% on BIRD and 87.9% on GPT-4ocorrection.
Our approach outperforms a series of GPT-4 based Text-to-Seek systems when adopting DeepSeek (much cheaper) with same intact prompts.
arXiv Detail & Related papers (2024-10-31T16:22:26Z) - CHASE-SQL: Multi-Path Reasoning and Preference Optimized Candidate Selection in Text-to-SQL [9.47170756607886]
CHASE- is a new framework that employs innovative strategies, using test-time compute in multi-agent modeling to improve candidate generation and selection.
To identify the best candidate, a selection agent is employed to rank the candidates through pairwise comparisons with a fine-tuned binary-candidates selection LLM.
Overall, our proposed CHASE- achieves the state-of-the-art execution accuracy of 73.0% and 73.01% on the test set and development set of the notable BIRD Text-to- dataset benchmark.
arXiv Detail & Related papers (2024-10-02T18:41:35Z) - CoE-SQL: In-Context Learning for Multi-Turn Text-to-SQL with Chain-of-Editions [22.493487741249716]
Large Language Models (LLMs) have been demonstrated to possess impressive capabilities in a variety of domains and tasks.
We investigate the issue of prompt design in the multi-turn text-to- task and attempt to enhance the LLMs' reasoning capacity.
arXiv Detail & Related papers (2024-05-04T16:56:14Z) - SQLPrompt: In-Context Text-to-SQL with Minimal Labeled Data [54.69489315952524]
"Prompt" is designed to improve the few-shot prompting capabilities of Text-to-LLMs.
"Prompt" outperforms previous approaches for in-context learning with few labeled data by a large margin.
We show that emphPrompt outperforms previous approaches for in-context learning with few labeled data by a large margin.
arXiv Detail & Related papers (2023-11-06T05:24:06Z) - SQL-PaLM: Improved Large Language Model Adaptation for Text-to-SQL (extended) [53.95151604061761]
This paper introduces the framework for enhancing Text-to- filtering using large language models (LLMs)
With few-shot prompting, we explore the effectiveness of consistency decoding with execution-based error analyses.
With instruction fine-tuning, we delve deep in understanding the critical paradigms that influence the performance of tuned LLMs.
arXiv Detail & Related papers (2023-05-26T21:39:05Z) - UNITE: A Unified Benchmark for Text-to-SQL Evaluation [72.72040379293718]
We introduce a UNIfied benchmark for Text-to-domain systems.
It is composed of publicly available text-to-domain datasets and 29K databases.
Compared to the widely used Spider benchmark, we introduce a threefold increase in SQL patterns.
arXiv Detail & Related papers (2023-05-25T17:19:52Z) - Towards Generalizable and Robust Text-to-SQL Parsing [77.18724939989647]
We propose a novel TKK framework consisting of Task decomposition, Knowledge acquisition, and Knowledge composition to learn text-to- parsing in stages.
We show that our framework is effective in all scenarios and state-of-the-art performance on the Spider, SParC, and Co. datasets.
arXiv Detail & Related papers (2022-10-23T09:21:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.