Model Compression using Progressive Channel Pruning
- URL: http://arxiv.org/abs/2507.04792v1
- Date: Mon, 07 Jul 2025 09:12:03 GMT
- Title: Model Compression using Progressive Channel Pruning
- Authors: Jinyang Guo, Weichen Zhang, Wanli Ouyang, Dong Xu,
- Abstract summary: We propose a framework called Progressive Channel Pruning (PCP) to accelerate Convolutional Neural Networks (CNNs)<n>Our framework iteratively prunes a small number of channels from several selected layers, which consists of a three-step attempting-selecting-pruning pipeline in each iteration.<n>Our comprehensive experiments on two benchmark datasets demonstrate that our PCP framework outperforms the existing channel pruning approaches.
- Score: 73.95107098134964
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In this work, we propose a simple but effective channel pruning framework called Progressive Channel Pruning (PCP) to accelerate Convolutional Neural Networks (CNNs). In contrast to the existing channel pruning methods that prune channels only once per layer in a layer-by-layer fashion, our new progressive framework iteratively prunes a small number of channels from several selected layers, which consists of a three-step attempting-selecting-pruning pipeline in each iteration. In the attempting step, we attempt to prune a pre-defined number of channels from one layer by using any existing channel pruning methods and estimate the accuracy drop for this layer based on the labelled samples in the validation set. In the selecting step, based on the estimated accuracy drops for all layers, we propose a greedy strategy to automatically select a set of layers that will lead to less overall accuracy drop after pruning these layers. In the pruning step, we prune a small number of channels from these selected layers. We further extend our PCP framework to prune channels for the deep transfer learning methods like Domain Adversarial Neural Network (DANN), in which we effectively reduce the data distribution mismatch in the channel pruning process by using both labelled samples from the source domain and pseudo-labelled samples from the target domain. Our comprehensive experiments on two benchmark datasets demonstrate that our PCP framework outperforms the existing channel pruning approaches under both supervised learning and transfer learning settings.
Related papers
- Revisiting Random Channel Pruning for Neural Network Compression [159.99002793644163]
Channel (or 3D filter) pruning serves as an effective way to accelerate the inference of neural networks.
In this paper, we try to determine the channel configuration of the pruned models by random search.
We show that this simple strategy works quite well compared with other channel pruning methods.
arXiv Detail & Related papers (2022-05-11T17:59:04Z) - CHEX: CHannel EXploration for CNN Model Compression [47.3520447163165]
We propose a novel Channel Exploration methodology, dubbed as CHEX, to rectify these problems.
CheX repeatedly prunes and regrows the channels throughout the training process, which reduces the risk of pruning important channels prematurely.
Results demonstrate that CHEX can effectively reduce the FLOPs of diverse CNN architectures on a variety of computer vision tasks.
arXiv Detail & Related papers (2022-03-29T17:52:41Z) - AdaPruner: Adaptive Channel Pruning and Effective Weights Inheritance [9.3421559369389]
We propose a pruning framework that adaptively determines the number of each layer's channels as well as the wights inheritance criteria for sub-network.
AdaPruner allows to obtain pruned network quickly, accurately and efficiently.
On ImageNet, we reduce 32.8% FLOPs of MobileNetV2 with only 0.62% decrease for top-1 accuracy, which exceeds all previous state-of-the-art channel pruning methods.
arXiv Detail & Related papers (2021-09-14T01:52:05Z) - Group Fisher Pruning for Practical Network Compression [58.25776612812883]
We present a general channel pruning approach that can be applied to various complicated structures.
We derive a unified metric based on Fisher information to evaluate the importance of a single channel and coupled channels.
Our method can be used to prune any structures including those with coupled channels.
arXiv Detail & Related papers (2021-08-02T08:21:44Z) - Operation-Aware Soft Channel Pruning using Differentiable Masks [51.04085547997066]
We propose a data-driven algorithm, which compresses deep neural networks in a differentiable way by exploiting the characteristics of operations.
We perform extensive experiments and achieve outstanding performance in terms of the accuracy of output networks.
arXiv Detail & Related papers (2020-07-08T07:44:00Z) - DMCP: Differentiable Markov Channel Pruning for Neural Networks [67.51334229530273]
We propose a novel differentiable method for channel pruning, named Differentiable Markov Channel Pruning (DMCP)
Our method is differentiable and can be directly optimized by gradient descent with respect to standard task loss and budget regularization.
To validate the effectiveness of our method, we perform extensive experiments on Imagenet with ResNet and MobilenetV2.
arXiv Detail & Related papers (2020-05-07T09:39:55Z) - Network Adjustment: Channel Search Guided by FLOPs Utilization Ratio [101.84651388520584]
This paper presents a new framework named network adjustment, which considers network accuracy as a function of FLOPs.
Experiments on standard image classification datasets and a wide range of base networks demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2020-04-06T15:51:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.