Dialogue-Based Multi-Dimensional Relationship Extraction from Novels
- URL: http://arxiv.org/abs/2507.04852v1
- Date: Mon, 07 Jul 2025 10:20:16 GMT
- Title: Dialogue-Based Multi-Dimensional Relationship Extraction from Novels
- Authors: Yuchen Yan, Hanjie Zhao, Senbin Zhu, Hongde Liu, Zhihong Zhang, Yuxiang Jia,
- Abstract summary: This study focuses on relation extraction in the novel domain and proposes a method based on Large Language Models (LLMs)<n>By incorporating relationship dimension separation, dialogue data construction, and contextual learning strategies, the proposed method enhances extraction performance.<n>We construct a high-quality Chinese novel relation extraction dataset to address the lack of labeled resources.
- Score: 5.691280935924612
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Relation extraction is a crucial task in natural language processing, with broad applications in knowledge graph construction and literary analysis. However, the complex context and implicit expressions in novel texts pose significant challenges for automatic character relationship extraction. This study focuses on relation extraction in the novel domain and proposes a method based on Large Language Models (LLMs). By incorporating relationship dimension separation, dialogue data construction, and contextual learning strategies, the proposed method enhances extraction performance. Leveraging dialogue structure information, it improves the model's ability to understand implicit relationships and demonstrates strong adaptability in complex contexts. Additionally, we construct a high-quality Chinese novel relation extraction dataset to address the lack of labeled resources and support future research. Experimental results show that our method outperforms traditional baselines across multiple evaluation metrics and successfully facilitates the automated construction of character relationship networks in novels.
Related papers
- Syntax-Informed Interactive Model for Comprehensive Aspect-Based
Sentiment Analysis [0.0]
We introduce an innovative model: Syntactic Dependency Enhanced Multi-Task Interaction Architecture (SDEMTIA) for comprehensive ABSA.
Our approach innovatively exploits syntactic knowledge (dependency relations and types) using a specialized Syntactic Dependency Embedded Interactive Network (SDEIN)
We also incorporate a novel and efficient message-passing mechanism within a multi-task learning framework to bolster learning efficacy.
arXiv Detail & Related papers (2023-11-28T16:03:22Z) - How Well Do Text Embedding Models Understand Syntax? [50.440590035493074]
The ability of text embedding models to generalize across a wide range of syntactic contexts remains under-explored.
Our findings reveal that existing text embedding models have not sufficiently addressed these syntactic understanding challenges.
We propose strategies to augment the generalization ability of text embedding models in diverse syntactic scenarios.
arXiv Detail & Related papers (2023-11-14T08:51:00Z) - Multi-Dimensional Evaluation of Text Summarization with In-Context
Learning [79.02280189976562]
In this paper, we study the efficacy of large language models as multi-dimensional evaluators using in-context learning.
Our experiments show that in-context learning-based evaluators are competitive with learned evaluation frameworks for the task of text summarization.
We then analyze the effects of factors such as the selection and number of in-context examples on performance.
arXiv Detail & Related papers (2023-06-01T23:27:49Z) - Multimodal Relation Extraction with Cross-Modal Retrieval and Synthesis [89.04041100520881]
This research proposes to retrieve textual and visual evidence based on the object, sentence, and whole image.
We develop a novel approach to synthesize the object-level, image-level, and sentence-level information for better reasoning between the same and different modalities.
arXiv Detail & Related papers (2023-05-25T15:26:13Z) - Using Textual Interface to Align External Knowledge for End-to-End
Task-Oriented Dialogue Systems [53.38517204698343]
We propose a novel paradigm that uses a textual interface to align external knowledge and eliminate redundant processes.
We demonstrate our paradigm in practice through MultiWOZ-Remake, including an interactive textual interface built for the MultiWOZ database.
arXiv Detail & Related papers (2023-05-23T05:48:21Z) - TAGPRIME: A Unified Framework for Relational Structure Extraction [71.88926365652034]
TAGPRIME is a sequence tagging model that appends priming words about the information of the given condition to the input text.
With the self-attention mechanism in pre-trained language models, the priming words make the output contextualized representations contain more information about the given condition.
Extensive experiments and analyses on three different tasks that cover ten datasets across five different languages demonstrate the generality and effectiveness of TAGPRIME.
arXiv Detail & Related papers (2022-05-25T08:57:46Z) - Improve Discourse Dependency Parsing with Contextualized Representations [28.916249926065273]
We propose to take advantage of transformers to encode contextualized representations of units of different levels.
Motivated by the observation of writing patterns commonly shared across articles, we propose a novel method that treats discourse relation identification as a sequence labelling task.
arXiv Detail & Related papers (2022-05-04T14:35:38Z) - Imposing Relation Structure in Language-Model Embeddings Using
Contrastive Learning [30.00047118880045]
We propose a novel contrastive learning framework that trains sentence embeddings to encode the relations in a graph structure.
The resulting relation-aware sentence embeddings achieve state-of-the-art results on the relation extraction task.
arXiv Detail & Related papers (2021-09-02T10:58:27Z) - A Dependency Syntactic Knowledge Augmented Interactive Architecture for
End-to-End Aspect-based Sentiment Analysis [73.74885246830611]
We propose a novel dependency syntactic knowledge augmented interactive architecture with multi-task learning for end-to-end ABSA.
This model is capable of fully exploiting the syntactic knowledge (dependency relations and types) by leveraging a well-designed Dependency Relation Embedded Graph Convolutional Network (DreGcn)
Extensive experimental results on three benchmark datasets demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2020-04-04T14:59:32Z) - How Far are We from Effective Context Modeling? An Exploratory Study on
Semantic Parsing in Context [59.13515950353125]
We present a grammar-based decoding semantic parsing and adapt typical context modeling methods on top of it.
We evaluate 13 context modeling methods on two large cross-domain datasets, and our best model achieves state-of-the-art performances.
arXiv Detail & Related papers (2020-02-03T11:28:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.