Beyond Scaling Curves: Internal Dynamics of Neural Networks Through the NTK Lens
- URL: http://arxiv.org/abs/2507.05035v1
- Date: Mon, 07 Jul 2025 14:17:44 GMT
- Title: Beyond Scaling Curves: Internal Dynamics of Neural Networks Through the NTK Lens
- Authors: Konstantin Nikolaou, Sven Krippendorf, Samuel Tovey, Christian Holm,
- Abstract summary: We empirically analyze how neural networks behave under data and model scaling through the lens of the neural tangent kernel (NTK)<n>Our findings of standard vision tasks show that similar performance scaling exponents can occur even though the internal model dynamics show opposite behavior.<n>We also address a previously unresolved issue in neural scaling: how convergence to the infinite-width limit affects scaling behavior in finite-width models.
- Score: 0.5745241788717261
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Scaling laws offer valuable insights into the relationship between neural network performance and computational cost, yet their underlying mechanisms remain poorly understood. In this work, we empirically analyze how neural networks behave under data and model scaling through the lens of the neural tangent kernel (NTK). This analysis establishes a link between performance scaling and the internal dynamics of neural networks. Our findings of standard vision tasks show that similar performance scaling exponents can occur even though the internal model dynamics show opposite behavior. This demonstrates that performance scaling alone is insufficient for understanding the underlying mechanisms of neural networks. We also address a previously unresolved issue in neural scaling: how convergence to the infinite-width limit affects scaling behavior in finite-width models. To this end, we investigate how feature learning is lost as the model width increases and quantify the transition between kernel-driven and feature-driven scaling regimes. We identify the maximum model width that supports feature learning, which, in our setups, we find to be more than ten times smaller than typical large language model widths.
Related papers
- Langevin Flows for Modeling Neural Latent Dynamics [81.81271685018284]
We introduce LangevinFlow, a sequential Variational Auto-Encoder where the time evolution of latent variables is governed by the underdamped Langevin equation.<n>Our approach incorporates physical priors -- such as inertia, damping, a learned potential function, and forces -- to represent both autonomous and non-autonomous processes in neural systems.<n>Our method outperforms state-of-the-art baselines on synthetic neural populations generated by a Lorenz attractor.
arXiv Detail & Related papers (2025-07-15T17:57:48Z) - Understanding Artificial Neural Network's Behavior from Neuron Activation Perspective [8.251799609350725]
This paper explores the intricate behavior of deep neural networks (DNNs) through the lens of neuron activation dynamics.<n>We propose a probabilistic framework that can analyze models' neuron activation patterns as a process.
arXiv Detail & Related papers (2024-12-24T01:01:06Z) - The Importance of Being Scalable: Improving the Speed and Accuracy of Neural Network Interatomic Potentials Across Chemical Domains [4.340917737559795]
We study scaling in Neural Network Interatomic Potentials (NNIPs)
NNIPs act as surrogate models for ab initio quantum mechanical calculations.
We develop an NNIP architecture designed for scaling: the Efficiently Scaled Attention Interatomic Potential (EScAIP)
arXiv Detail & Related papers (2024-10-31T17:35:57Z) - Unified Neural Network Scaling Laws and Scale-time Equivalence [10.918504301310753]
We present a novel theoretical characterization of how three factors -- model size, training time, and data volume -- interact to determine the performance of deep neural networks.
We first establish a theoretical and empirical equivalence between scaling the size of a neural network and increasing its training time proportionally.
We then combine scale-time equivalence with a linear model analysis of double descent to obtain a unified theoretical scaling law.
arXiv Detail & Related papers (2024-09-09T16:45:26Z) - Towards Scalable and Versatile Weight Space Learning [51.78426981947659]
This paper introduces the SANE approach to weight-space learning.
Our method extends the idea of hyper-representations towards sequential processing of subsets of neural network weights.
arXiv Detail & Related papers (2024-06-14T13:12:07Z) - Graph Neural Networks for Learning Equivariant Representations of Neural Networks [55.04145324152541]
We propose to represent neural networks as computational graphs of parameters.
Our approach enables a single model to encode neural computational graphs with diverse architectures.
We showcase the effectiveness of our method on a wide range of tasks, including classification and editing of implicit neural representations.
arXiv Detail & Related papers (2024-03-18T18:01:01Z) - A Dynamical Model of Neural Scaling Laws [79.59705237659547]
We analyze a random feature model trained with gradient descent as a solvable model of network training and generalization.
Our theory shows how the gap between training and test loss can gradually build up over time due to repeated reuse of data.
arXiv Detail & Related papers (2024-02-02T01:41:38Z) - Addressing caveats of neural persistence with deep graph persistence [54.424983583720675]
We find that the variance of network weights and spatial concentration of large weights are the main factors that impact neural persistence.
We propose an extension of the filtration underlying neural persistence to the whole neural network instead of single layers.
This yields our deep graph persistence measure, which implicitly incorporates persistent paths through the network and alleviates variance-related issues.
arXiv Detail & Related papers (2023-07-20T13:34:11Z) - Trainability, Expressivity and Interpretability in Gated Neural ODEs [0.0]
We introduce a novel measure of expressivity which probes the capacity of a neural network to generate complex trajectories.
We show how reduced-dimensional gnODEs retain their modeling power while greatly improving interpretability.
We also demonstrate the benefit of gating in nODEs on several real-world tasks.
arXiv Detail & Related papers (2023-07-12T18:29:01Z) - Meta-Principled Family of Hyperparameter Scaling Strategies [9.89901717499058]
We calculate the scalings of dynamical observables -- network outputs, neural tangent kernels, and differentials of neural tangent kernels -- for wide and deep neural networks.
We observe that various infinite-width limits examined in the literature correspond to the distinct corners of the interconnected web.
arXiv Detail & Related papers (2022-10-10T18:00:01Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
We show how fully-connected neural networks solving a discrimination task can learn a convolutional structure directly from their inputs.
By carefully designing data models, we show that the emergence of this pattern is triggered by the non-Gaussian, higher-order local structure of the inputs.
arXiv Detail & Related papers (2022-02-01T17:11:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.