A COMPASS to Model Comparison and Simulation-Based Inference in Galactic Chemical Evolution
- URL: http://arxiv.org/abs/2507.05060v2
- Date: Tue, 08 Jul 2025 06:11:39 GMT
- Title: A COMPASS to Model Comparison and Simulation-Based Inference in Galactic Chemical Evolution
- Authors: Berkay Gunes, Sven Buder, Tobias Buck,
- Abstract summary: We present a novel simulation-based inference framework that combines score-based diffusion models with transformer architectures.<n>Our results demonstrate that modern SBI methods can robustly constrain uncertain physics in astrophysical simulators.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present COMPASS, a novel simulation-based inference framework that combines score-based diffusion models with transformer architectures to jointly perform parameter estimation and Bayesian model comparison across competing Galactic Chemical Evolution (GCE) models. COMPASS handles high-dimensional, incomplete, and variable-size stellar abundance datasets. Applied to high-precision elemental abundance measurements, COMPASS evaluates 40 combinations of nucleosynthetic yield tables. The model strongly favours Asymptotic Giant Branch yields from NuGrid and core-collapse SN yields used in the IllustrisTNG simulation, achieving near-unity cumulative posterior probability. Using the preferred model, we infer a steep high-mass IMF slope and an elevated Supernova Ia normalization, consistent with prior solar neighbourhood studies but now derived from fully amortized Bayesian inference. Our results demonstrate that modern SBI methods can robustly constrain uncertain physics in astrophysical simulators and enable principled model selection when analysing complex, simulation-based data.
Related papers
- SESaMo: Symmetry-Enforcing Stochastic Modulation for Normalizing Flows [0.0]
This paper introduces Symmetry-Enforcing Modulation (SESaMo)<n>SESaMo enables the incorporation of biases (e.g., symmetries) into normalizing flows through a novel technique called inductive modulation.<n>Our numerical experiments benchmark SESaMo in different scenarios, including an 8-Gaussian mixture model and physically relevant field theories.
arXiv Detail & Related papers (2025-05-26T07:34:11Z) - GausSim: Foreseeing Reality by Gaussian Simulator for Elastic Objects [55.02281855589641]
GausSim is a novel neural network-based simulator designed to capture the dynamic behaviors of real-world elastic objects represented through Gaussian kernels.<n>We leverage continuum mechanics and treat each kernel as a Center of Mass System (CMS) that represents continuous piece of matter.<n>In addition, GausSim incorporates explicit physics constraints, such as mass and momentum conservation, ensuring interpretable results and robust, physically plausible simulations.
arXiv Detail & Related papers (2024-12-23T18:58:17Z) - Diffusion posterior sampling for simulation-based inference in tall data settings [53.17563688225137]
Simulation-based inference ( SBI) is capable of approximating the posterior distribution that relates input parameters to a given observation.
In this work, we consider a tall data extension in which multiple observations are available to better infer the parameters of the model.
We compare our method to recently proposed competing approaches on various numerical experiments and demonstrate its superiority in terms of numerical stability and computational cost.
arXiv Detail & Related papers (2024-04-11T09:23:36Z) - Synthetic location trajectory generation using categorical diffusion
models [50.809683239937584]
Diffusion models (DPMs) have rapidly evolved to be one of the predominant generative models for the simulation of synthetic data.
We propose using DPMs for the generation of synthetic individual location trajectories (ILTs) which are sequences of variables representing physical locations visited by individuals.
arXiv Detail & Related papers (2024-02-19T15:57:39Z) - AI enhanced data assimilation and uncertainty quantification applied to
Geological Carbon Storage [0.0]
We introduce the Surrogate-based hybrid ESMDA (SH-ESMDA), an adaptation of the traditional Ensemble Smoother with Multiple Data Assimilation (ESMDA)
We also introduce Surrogate-based Hybrid RML (SH-RML), a variational data assimilation approach that relies on the randomized maximum likelihood (RML)
Our comparative analyses show that SH-RML offers better uncertainty compared to conventional ESMDA for the case study.
arXiv Detail & Related papers (2024-02-09T00:24:46Z) - Online Variational Sequential Monte Carlo [49.97673761305336]
We build upon the variational sequential Monte Carlo (VSMC) method, which provides computationally efficient and accurate model parameter estimation and Bayesian latent-state inference.
Online VSMC is capable of performing efficiently, entirely on-the-fly, both parameter estimation and particle proposal adaptation.
arXiv Detail & Related papers (2023-12-19T21:45:38Z) - BARTSIMP: flexible spatial covariate modeling and prediction using Bayesian additive regression trees [0.0]
In this paper, we investigate the combination of a Gaussian process spatial model with a Bayesian Additive Regression Tree (BART) model.<n>The computational burden of the approach is reduced by combining Markov chain Monte Carlo with the Integrated Nested Laplace Approximation (INLA) technique.<n>We then use the model to predict anthropometric responses in Kenya, with the data collected via a complex sampling design.
arXiv Detail & Related papers (2023-09-23T05:35:17Z) - Geometric Neural Diffusion Processes [55.891428654434634]
We extend the framework of diffusion models to incorporate a series of geometric priors in infinite-dimension modelling.
We show that with these conditions, the generative functional model admits the same symmetry.
arXiv Detail & Related papers (2023-07-11T16:51:38Z) - Maximum Likelihood Learning of Unnormalized Models for Simulation-Based
Inference [44.281860162298564]
We introduce two synthetic likelihood methods for Simulation-Based Inference.
We learn a conditional energy-based model (EBM) of the likelihood using synthetic data generated by the simulator.
We demonstrate the properties of both methods on a range of synthetic datasets, and apply them to a model of the neuroscience network in the crab.
arXiv Detail & Related papers (2022-10-26T14:38:24Z) - Autoregressive Dynamics Models for Offline Policy Evaluation and
Optimization [60.73540999409032]
We show that expressive autoregressive dynamics models generate different dimensions of the next state and reward sequentially conditioned on previous dimensions.
We also show that autoregressive dynamics models are useful for offline policy optimization by serving as a way to enrich the replay buffer.
arXiv Detail & Related papers (2021-04-28T16:48:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.