Pseudo-likelihood produces associative memories able to generalize, even for asymmetric couplings
- URL: http://arxiv.org/abs/2507.05147v1
- Date: Mon, 07 Jul 2025 15:57:44 GMT
- Title: Pseudo-likelihood produces associative memories able to generalize, even for asymmetric couplings
- Authors: Francesco D'Amico, Dario Bocchi, Luca Maria Del Bono, Saverio Rossi, Matteo Negri,
- Abstract summary: A widely used workaround is to maximize the pseudo-likelihood, which replaces the global normalization with tractable local normalizations.<n>We show that, in the zero-temperature limit, a network trained to maximize pseudo-likelihood naturally implements an associative memory.<n>Our results therefore reveal pseudo-likelihood works both as an efficient inference tool and as a principled mechanism for memory and generalization.
- Score: 9.697311933975294
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Energy-based probabilistic models learned by maximizing the likelihood of the data are limited by the intractability of the partition function. A widely used workaround is to maximize the pseudo-likelihood, which replaces the global normalization with tractable local normalizations. Here we show that, in the zero-temperature limit, a network trained to maximize pseudo-likelihood naturally implements an associative memory: if the training set is small, patterns become fixed-point attractors whose basins of attraction exceed those of any classical Hopfield rule. We explain quantitatively this effect on uncorrelated random patterns. Moreover, we show that, for different structured datasets coming from computer science (random feature model, MNIST), physics (spin glasses) and biology (proteins), as the number of training examples increases the learned network goes beyond memorization, developing meaningful attractors with non-trivial correlations with test examples, thus showing the ability to generalize. Our results therefore reveal pseudo-likelihood works both as an efficient inference tool and as a principled mechanism for memory and generalization.
Related papers
- The Universality Lens: Why Even Highly Over-Parametrized Models Learn Well [4.2466572124752995]
We study a Bayesian mixture with log-loss and (almost) uniform prior over an expansive hypothesis class.<n>Key result shows that the learner's regret is not determined by the overall size of the hypothesis class.<n>Results apply broadly across online, batch, and supervised learning settings.
arXiv Detail & Related papers (2025-06-09T11:32:31Z) - Bigger Isn't Always Memorizing: Early Stopping Overparameterized Diffusion Models [51.03144354630136]
Generalization in natural data domains is progressively achieved during training before the onset of memorization.<n>Generalization vs. memorization is then best understood as a competition between time scales.<n>We show that this phenomenology is recovered in diffusion models learning a simple probabilistic context-free grammar with random rules.
arXiv Detail & Related papers (2025-05-22T17:40:08Z) - Learning Divergence Fields for Shift-Robust Graph Representations [73.11818515795761]
In this work, we propose a geometric diffusion model with learnable divergence fields for the challenging problem with interdependent data.
We derive a new learning objective through causal inference, which can guide the model to learn generalizable patterns of interdependence that are insensitive across domains.
arXiv Detail & Related papers (2024-06-07T14:29:21Z) - Scaling and renormalization in high-dimensional regression [72.59731158970894]
We present a unifying perspective on recent results on ridge regression.<n>We use the basic tools of random matrix theory and free probability, aimed at readers with backgrounds in physics and deep learning.<n>Our results extend and provide a unifying perspective on earlier models of scaling laws.
arXiv Detail & Related papers (2024-05-01T15:59:00Z) - DIFFormer: Scalable (Graph) Transformers Induced by Energy Constrained
Diffusion [66.21290235237808]
We introduce an energy constrained diffusion model which encodes a batch of instances from a dataset into evolutionary states.
We provide rigorous theory that implies closed-form optimal estimates for the pairwise diffusion strength among arbitrary instance pairs.
Experiments highlight the wide applicability of our model as a general-purpose encoder backbone with superior performance in various tasks.
arXiv Detail & Related papers (2023-01-23T15:18:54Z) - Instance-Dependent Generalization Bounds via Optimal Transport [51.71650746285469]
Existing generalization bounds fail to explain crucial factors that drive the generalization of modern neural networks.
We derive instance-dependent generalization bounds that depend on the local Lipschitz regularity of the learned prediction function in the data space.
We empirically analyze our generalization bounds for neural networks, showing that the bound values are meaningful and capture the effect of popular regularization methods during training.
arXiv Detail & Related papers (2022-11-02T16:39:42Z) - Variational Hierarchical Mixtures for Probabilistic Learning of Inverse
Dynamics [20.953728061894044]
Well-calibrated probabilistic regression models are a crucial learning component in robotics applications as datasets grow rapidly and tasks become more complex.
We consider a probabilistic hierarchical modeling paradigm that combines the benefits of both worlds to deliver computationally efficient representations with inherent complexity regularization.
We derive two efficient variational inference techniques to learn these representations and highlight the advantages of hierarchical infinite local regression models.
arXiv Detail & Related papers (2022-11-02T13:54:07Z) - Contrasting random and learned features in deep Bayesian linear
regression [12.234742322758418]
We study how the ability to learn affects the generalization performance of a simple class of models.
By comparing deep random feature models to deep networks in which all layers are trained, we provide a detailed characterization of the interplay between width, depth, data density, and prior mismatch.
arXiv Detail & Related papers (2022-03-01T15:51:29Z) - Fluctuations, Bias, Variance & Ensemble of Learners: Exact Asymptotics
for Convex Losses in High-Dimension [25.711297863946193]
We develop a theory for the study of fluctuations in an ensemble of generalised linear models trained on different, but correlated, features.
We provide a complete description of the joint distribution of the empirical risk minimiser for generic convex loss and regularisation in the high-dimensional limit.
arXiv Detail & Related papers (2022-01-31T17:44:58Z) - Optimal regularizations for data generation with probabilistic graphical
models [0.0]
Empirically, well-chosen regularization schemes dramatically improve the quality of the inferred models.
We consider the particular case of L 2 and L 1 regularizations in the Maximum A Posteriori (MAP) inference of generative pairwise graphical models.
arXiv Detail & Related papers (2021-12-02T14:45:16Z) - Predicting Unreliable Predictions by Shattering a Neural Network [145.3823991041987]
Piecewise linear neural networks can be split into subfunctions.
Subfunctions have their own activation pattern, domain, and empirical error.
Empirical error for the full network can be written as an expectation over subfunctions.
arXiv Detail & Related papers (2021-06-15T18:34:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.