QMoE: A Quantum Mixture of Experts Framework for Scalable Quantum Neural Networks
- URL: http://arxiv.org/abs/2507.05190v1
- Date: Mon, 07 Jul 2025 16:49:07 GMT
- Title: QMoE: A Quantum Mixture of Experts Framework for Scalable Quantum Neural Networks
- Authors: Hoang-Quan Nguyen, Xuan-Bac Nguyen, Sankalp Pandey, Samee U. Khan, Ilya Safro, Khoa Luu,
- Abstract summary: Quantum machine learning (QML) has emerged as a promising direction in the noisy intermediate-scale quantum (NISQ) era.<n>We propose quantum mixture of experts (QMoE), a novel quantum architecture that integrates the mixture of experts (MoE) paradigm into the QML setting.<n>Our work paves the way for scalable and interpretable quantum learning frameworks.
- Score: 8.523710589195268
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum machine learning (QML) has emerged as a promising direction in the noisy intermediate-scale quantum (NISQ) era, offering computational and memory advantages by harnessing superposition and entanglement. However, QML models often face challenges in scalability and expressiveness due to hardware constraints. In this paper, we propose quantum mixture of experts (QMoE), a novel quantum architecture that integrates the mixture of experts (MoE) paradigm into the QML setting. QMoE comprises multiple parameterized quantum circuits serving as expert models, along with a learnable quantum routing mechanism that selects and aggregates specialized quantum experts per input. The empirical results from the proposed QMoE on quantum classification tasks demonstrate that it consistently outperforms standard quantum neural networks, highlighting its effectiveness in learning complex data patterns. Our work paves the way for scalable and interpretable quantum learning frameworks.
Related papers
- Iterative Quantum Feature Maps [0.0]
Quantum machine learning models that leverage quantum circuits as quantum feature maps (QFMs) are recognized for their enhanced expressive power in learning tasks.<n> deploying deep QFMs on real quantum hardware remains challenging due to circuit noise and hardware constraints.<n>We propose Iterative Quantum Feature Maps (IQFMs), a hybrid quantum-classical framework that constructs a deep architecture by iteratively connecting shallow QFMs with classically computed augmentation weights.
arXiv Detail & Related papers (2025-06-24T09:40:10Z) - VQC-MLPNet: An Unconventional Hybrid Quantum-Classical Architecture for Scalable and Robust Quantum Machine Learning [60.996803677584424]
Variational Quantum Circuits (VQCs) offer a novel pathway for quantum machine learning.<n>Their practical application is hindered by inherent limitations such as constrained linear expressivity, optimization challenges, and acute sensitivity to quantum hardware noise.<n>This work introduces VQC-MLPNet, a scalable and robust hybrid quantum-classical architecture designed to overcome these obstacles.
arXiv Detail & Related papers (2025-06-12T01:38:15Z) - Differentiable Quantum Architecture Search in Quantum-Enhanced Neural Network Parameter Generation [4.358861563008207]
Quantum neural networks (QNNs) have shown promise both empirically and theoretically.<n> Hardware imperfections and limited access to quantum devices pose practical challenges.<n>We propose an automated solution using differentiable optimization.
arXiv Detail & Related papers (2025-05-13T19:01:08Z) - Quantum Machine Learning: An Interplay Between Quantum Computing and Machine Learning [54.80832749095356]
Quantum machine learning (QML) is a rapidly growing field that combines quantum computing principles with traditional machine learning.
This paper introduces quantum computing for the machine learning paradigm, where variational quantum circuits are used to develop QML architectures.
arXiv Detail & Related papers (2024-11-14T12:27:50Z) - Challenges and Opportunities in Quantum Machine Learning [2.5671549335906367]
Quantum Machine Learning (QML) has the potential of accelerating data analysis, especially for quantum data.
Here we review current methods and applications for QML.
We highlight differences between quantum and classical machine learning, with a focus on quantum neural networks and quantum deep learning.
arXiv Detail & Related papers (2023-03-16T17:10:39Z) - Recent Advances for Quantum Neural Networks in Generative Learning [98.88205308106778]
Quantum generative learning models (QGLMs) may surpass their classical counterparts.
We review the current progress of QGLMs from the perspective of machine learning.
We discuss the potential applications of QGLMs in both conventional machine learning tasks and quantum physics.
arXiv Detail & Related papers (2022-06-07T07:32:57Z) - Theory of Quantum Generative Learning Models with Maximum Mean
Discrepancy [67.02951777522547]
We study learnability of quantum circuit Born machines (QCBMs) and quantum generative adversarial networks (QGANs)
We first analyze the generalization ability of QCBMs and identify their superiorities when the quantum devices can directly access the target distribution.
Next, we prove how the generalization error bound of QGANs depends on the employed Ansatz, the number of qudits, and input states.
arXiv Detail & Related papers (2022-05-10T08:05:59Z) - Variational Quantum-Neural Hybrid Error Mitigation [6.555128824546528]
Quantum error mitigation (QEM) is crucial for obtaining reliable results on quantum computers.
We show how variational quantum-neural hybrid eigensolver (VQNHE) algorithm is inherently noise resilient with a unique QEM capacity.
arXiv Detail & Related papers (2021-12-20T08:07:58Z) - Quantum Federated Learning with Quantum Data [87.49715898878858]
Quantum machine learning (QML) has emerged as a promising field that leans on the developments in quantum computing to explore large complex machine learning problems.
This paper proposes the first fully quantum federated learning framework that can operate over quantum data and, thus, share the learning of quantum circuit parameters in a decentralized manner.
arXiv Detail & Related papers (2021-05-30T12:19:27Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
We propose a resource and runtime efficient scheme termed quantum architecture search (QAS)
QAS automatically seeks a near-optimal ansatz to balance benefits and side-effects brought by adding more noisy quantum gates.
We implement QAS on both the numerical simulator and real quantum hardware, via the IBM cloud, to accomplish data classification and quantum chemistry tasks.
arXiv Detail & Related papers (2020-10-20T12:06:27Z) - TensorFlow Quantum: A Software Framework for Quantum Machine Learning [36.75544801185366]
We introduce Quantum (TFQ), an open source library for the rapid prototyping of hybrid quantum-classical models for classical or quantum data.
We demonstrate how one can apply TFQ to tackle advanced quantum learning tasks including meta-learning, layerwise learning, Hamiltonian learning, sampling thermal states, variational quantum eigensolvers, classification of quantum phase transitions, generative adversarial networks, and reinforcement learning.
arXiv Detail & Related papers (2020-03-06T01:31:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.