Neuralocks: Real-Time Dynamic Neural Hair Simulation
- URL: http://arxiv.org/abs/2507.05191v1
- Date: Mon, 07 Jul 2025 16:49:19 GMT
- Title: Neuralocks: Real-Time Dynamic Neural Hair Simulation
- Authors: Gene Wei-Chin Lin, Egor Larionov, Hsiao-yu Chen, Doug Roble, Tuur Stuyck,
- Abstract summary: The dynamic behavior of hair, such as bouncing or swaying in response to character movements like jumping or walking, plays a significant role in enhancing the overall realism and engagement of virtual experiences.<n>Current methods for simulating hair have been constrained by two primary approaches: highly optimized physics-based systems and neural methods.<n>This paper introduces a novel neural method that breaks through these limitations, achieving efficient and stable dynamic hair simulation.
- Score: 4.249827194545251
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Real-time hair simulation is a vital component in creating believable virtual avatars, as it provides a sense of immersion and authenticity. The dynamic behavior of hair, such as bouncing or swaying in response to character movements like jumping or walking, plays a significant role in enhancing the overall realism and engagement of virtual experiences. Current methods for simulating hair have been constrained by two primary approaches: highly optimized physics-based systems and neural methods. However, state-of-the-art neural techniques have been limited to quasi-static solutions, failing to capture the dynamic behavior of hair. This paper introduces a novel neural method that breaks through these limitations, achieving efficient and stable dynamic hair simulation while outperforming existing approaches. We propose a fully self-supervised method which can be trained without any manual intervention or artist generated training data allowing the method to be integrated with hair reconstruction methods to enable automatic end-to-end methods for avatar reconstruction. Our approach harnesses the power of compact, memory-efficient neural networks to simulate hair at the strand level, allowing for the simulation of diverse hairstyles without excessive computational resources or memory requirements. We validate the effectiveness of our method through a variety of hairstyle examples, showcasing its potential for real-world applications.
Related papers
- HairFormer: Transformer-Based Dynamic Neural Hair Simulation [3.1157179526391374]
We propose a Transformer-powered static network that predicts static draped shapes for any hairstyle.<n>A dynamic network with a novel cross-attention mechanism fuses static hair features with kinematic input to generate expressive dynamics.<n>Our method demonstrates high-fidelity and generalizable dynamic hair across various styles, guided by physics-informed losses.
arXiv Detail & Related papers (2025-07-16T19:42:08Z) - Hybrid Neural-MPM for Interactive Fluid Simulations in Real-Time [57.30651532625017]
We present a novel hybrid method that integrates numerical simulation, neural physics, and generative control.<n>Our system demonstrates robust performance across diverse 2D/3D scenarios, material types, and obstacle interactions.<n>We promise to release both models and data upon acceptance.
arXiv Detail & Related papers (2025-05-25T01:27:18Z) - Quaffure: Real-Time Quasi-Static Neural Hair Simulation [11.869362129320473]
We propose a novel neural approach to predict hair deformations that generalizes to various body poses, shapes, and hairstyles.<n>Our model is trained using a self-supervised loss, eliminating the need for expensive data generation and storage.<n>Our approach is highly suitable for real-time applications with an inference time of only a few milliseconds on consumer hardware.
arXiv Detail & Related papers (2024-12-13T11:44:56Z) - SimAvatar: Simulation-Ready Avatars with Layered Hair and Clothing [59.44721317364197]
We introduce SimAvatar, a framework designed to generate simulation-ready clothed 3D human avatars from a text prompt.<n>Our method is the first to produce highly realistic, fully simulation-ready 3D avatars, surpassing the capabilities of current approaches.
arXiv Detail & Related papers (2024-12-12T18:35:26Z) - Neural Material Adaptor for Visual Grounding of Intrinsic Dynamics [48.99021224773799]
We propose the Neural Material Adaptor (NeuMA), which integrates existing physical laws with learned corrections.
We also propose Particle-GS, a particle-driven 3D Gaussian Splatting variant that bridges simulation and observed images.
arXiv Detail & Related papers (2024-10-10T17:43:36Z) - HAAR: Text-Conditioned Generative Model of 3D Strand-based Human
Hairstyles [85.12672855502517]
We present HAAR, a new strand-based generative model for 3D human hairstyles.
Based on textual inputs, HAAR produces 3D hairstyles that could be used as production-level assets in modern computer graphics engines.
arXiv Detail & Related papers (2023-12-18T19:19:32Z) - Neural Point-based Volumetric Avatar: Surface-guided Neural Points for
Efficient and Photorealistic Volumetric Head Avatar [62.87222308616711]
We propose fullname (name), a method that adopts the neural point representation and the neural volume rendering process.
Specifically, the neural points are strategically constrained around the surface of the target expression via a high-resolution UV displacement map.
By design, our name is better equipped to handle topologically changing regions and thin structures while also ensuring accurate expression control when animating avatars.
arXiv Detail & Related papers (2023-07-11T03:40:10Z) - Neural Haircut: Prior-Guided Strand-Based Hair Reconstruction [4.714310894654027]
This work proposes an approach capable of accurate hair geometry reconstruction at a strand level from a monocular video or multi-view images captured in uncontrolled conditions.
The combined system, named Neural Haircut, achieves high realism and personalization of the reconstructed hairstyles.
arXiv Detail & Related papers (2023-06-09T13:08:34Z) - Efficient Meshy Neural Fields for Animatable Human Avatars [87.68529918184494]
Efficiently digitizing high-fidelity animatable human avatars from videos is a challenging and active research topic.
Recent rendering-based neural representations open a new way for human digitization with their friendly usability and photo-varying reconstruction quality.
We present EMA, a method that Efficiently learns Meshy neural fields to reconstruct animatable human Avatars.
arXiv Detail & Related papers (2023-03-23T00:15:34Z) - NeuralHDHair: Automatic High-fidelity Hair Modeling from a Single Image
Using Implicit Neural Representations [40.14104266690989]
We introduce NeuralHDHair, a flexible, fully automatic system for modeling high-fidelity hair from a single image.
We propose a novel voxel-aligned implicit function (VIFu) to represent the global hair feature.
To improve the efficiency of a traditional hair growth algorithm, we adopt a local neural implicit function to grow strands based on the estimated 3D hair geometric features.
arXiv Detail & Related papers (2022-05-09T10:39:39Z) - HVH: Learning a Hybrid Neural Volumetric Representation for Dynamic Hair
Performance Capture [11.645769995924548]
Capturing and rendering life-like hair is particularly challenging due to its fine geometric structure, the complex physical interaction and its non-trivial visual appearance.
In this paper, we use a novel, volumetric hair representation that is com-posed of thousands of primitives.
Our method can not only create realistic renders of recorded multi-view sequences, but also create renderings for new hair configurations by providing new control signals.
arXiv Detail & Related papers (2021-12-13T18:57:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.