StreamVLN: Streaming Vision-and-Language Navigation via SlowFast Context Modeling
- URL: http://arxiv.org/abs/2507.05240v1
- Date: Mon, 07 Jul 2025 17:49:41 GMT
- Title: StreamVLN: Streaming Vision-and-Language Navigation via SlowFast Context Modeling
- Authors: Meng Wei, Chenyang Wan, Xiqian Yu, Tai Wang, Yuqiang Yang, Xiaohan Mao, Chenming Zhu, Wenzhe Cai, Hanqing Wang, Yilun Chen, Xihui Liu, Jiangmiao Pang,
- Abstract summary: Vision-and-Language Navigation (VLN) in real-world settings requires agents to process continuous visual streams and generate actions with low latency grounded in language instructions.<n>We introduce StreamVLN, a streaming VLN framework that employs a hybrid slow-fast context modeling strategy to support multi-modal reasoning over interleaved vision, language and action inputs.<n> Experiments on VLN-CE benchmarks demonstrate state-of-the-art performance with stable low latency, ensuring robustness and efficiency in real-world deployment.
- Score: 27.468345201477504
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Vision-and-Language Navigation (VLN) in real-world settings requires agents to process continuous visual streams and generate actions with low latency grounded in language instructions. While Video-based Large Language Models (Video-LLMs) have driven recent progress, current VLN methods based on Video-LLM often face trade-offs among fine-grained visual understanding, long-term context modeling and computational efficiency. We introduce StreamVLN, a streaming VLN framework that employs a hybrid slow-fast context modeling strategy to support multi-modal reasoning over interleaved vision, language and action inputs. The fast-streaming dialogue context facilitates responsive action generation through a sliding-window of active dialogues, while the slow-updating memory context compresses historical visual states using a 3D-aware token pruning strategy. With this slow-fast design, StreamVLN achieves coherent multi-turn dialogue through efficient KV cache reuse, supporting long video streams with bounded context size and inference cost. Experiments on VLN-CE benchmarks demonstrate state-of-the-art performance with stable low latency, ensuring robustness and efficiency in real-world deployment. The project page is: \href{https://streamvln.github.io/}{https://streamvln.github.io/}.
Related papers
- LiveVLM: Efficient Online Video Understanding via Streaming-Oriented KV Cache and Retrieval [13.891391928767195]
LiveVLM is a training-free framework specifically designed for streaming, online video understanding and real-time interaction.<n>LiveVLM constructs a streaming-oriented KV cache to process video streams in real-time, retain long-term video details and eliminate redundant KVs.<n>When a new question is proposed, LiveVLM incorporates an online question-answering process that efficiently fetches both short-term and long-term visual information.
arXiv Detail & Related papers (2025-05-21T08:47:15Z) - Token-Efficient Long Video Understanding for Multimodal LLMs [101.70681093383365]
STORM is a novel architecture incorporating a dedicated temporal encoder between the image encoder and the Video-LLMs.<n>We show that STORM achieves state-of-the-art results across various long video understanding benchmarks.
arXiv Detail & Related papers (2025-03-06T06:17:38Z) - SVBench: A Benchmark with Temporal Multi-Turn Dialogues for Streaming Video Understanding [56.78088668917983]
We introduce SVBench, a pioneering benchmark with temporal multi-turn question-answering chains.<n>We design a semi-automated annotation pipeline to obtain 49,979 Question-Answer (QA) pairs of 1,353 streaming videos.<n>Our experimental results, obtained from 14 models in dialogue and streaming evaluations, reveal that while the closed-source GPT-4o outperforms others, most open-source LVLMs struggle with long-context streaming video understanding.
arXiv Detail & Related papers (2025-02-15T14:29:44Z) - Streaming Video Understanding and Multi-round Interaction with Memory-enhanced Knowledge [57.01131456894516]
Current video understanding models struggle with processing long video sequences, supporting multi-turn dialogues, and adapting to real-world dynamic scenarios.<n>We propose StreamChat, a training-free framework for streaming video reasoning and conversational interaction.<n>Our framework incorporates a parallel system scheduling strategy that enhances processing speed and reduces latency, ensuring robust performance in real-world applications.
arXiv Detail & Related papers (2025-01-23T08:33:10Z) - StreamChat: Chatting with Streaming Video [85.02875830683637]
StreamChat is a novel approach that enhances the interaction capabilities of Large Multimodal Models with streaming video content.<n>We introduce a flexible and efficient crossattention-based architecture to process dynamic streaming inputs.<n>We construct a new dense instruction dataset to facilitate the training of streaming interaction models.
arXiv Detail & Related papers (2024-12-11T18:59:54Z) - Flash-VStream: Memory-Based Real-Time Understanding for Long Video Streams [78.72965584414368]
We present Flash-VStream, a video-language model that simulates the memory mechanism of human.
Compared to existing models, Flash-VStream achieves significant reductions in latency inference and VRAM consumption.
We propose VStream-QA, a novel question answering benchmark specifically designed for online video streaming understanding.
arXiv Detail & Related papers (2024-06-12T11:07:55Z) - Multimodal Transformer with Variable-length Memory for
Vision-and-Language Navigation [79.1669476932147]
Vision-and-Language Navigation (VLN) is a task that an agent is required to follow a language instruction to navigate to the goal position.
Recent Transformer-based VLN methods have made great progress benefiting from the direct connections between visual observations and the language instruction.
We introduce Multimodal Transformer with Variable-length Memory (MTVM) for visually-grounded natural language navigation.
arXiv Detail & Related papers (2021-11-10T16:04:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.