Modeling Latent Partner Strategies for Adaptive Zero-Shot Human-Agent Collaboration
- URL: http://arxiv.org/abs/2507.05244v1
- Date: Mon, 07 Jul 2025 17:53:13 GMT
- Title: Modeling Latent Partner Strategies for Adaptive Zero-Shot Human-Agent Collaboration
- Authors: Benjamin Li, Shuyang Shi, Lucia Romero, Huao Li, Yaqi Xie, Woojun Kim, Stefanos Nikolaidis, Michael Lewis, Katia Sycara, Simon Stepputtis,
- Abstract summary: We introduce TALENTS, a strategy-conditioned cooperator framework that learns to represent, categorize, and adapt to a range of partner strategies.<n>Our approach utilizes a variational autoencoder to learn a latent strategy space from trajectory data.<n>In order to adapt to previously unseen partners, we leverage a fixed-share regret minimization algorithm.
- Score: 8.829018359718086
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In collaborative tasks, being able to adapt to your teammates is a necessary requirement for success. When teammates are heterogeneous, such as in human-agent teams, agents need to be able to observe, recognize, and adapt to their human partners in real time. This becomes particularly challenging in tasks with time pressure and complex strategic spaces where the dynamics can change rapidly. In this work, we introduce TALENTS, a strategy-conditioned cooperator framework that learns to represent, categorize, and adapt to a range of partner strategies, enabling ad-hoc teamwork. Our approach utilizes a variational autoencoder to learn a latent strategy space from trajectory data. This latent space represents the underlying strategies that agents employ. Subsequently, the system identifies different types of strategy by clustering the data. Finally, a cooperator agent is trained to generate partners for each type of strategy, conditioned on these clusters. In order to adapt to previously unseen partners, we leverage a fixed-share regret minimization algorithm that infers and adjusts the estimated partner strategy dynamically. We assess our approach in a customized version of the Overcooked environment, posing a challenging cooperative cooking task that demands strong coordination across a wide range of possible strategies. Using an online user study, we show that our agent outperforms current baselines when working with unfamiliar human partners.
Related papers
- Learning Multi-Agent Communication from Graph Modeling Perspective [62.13508281188895]
We introduce a novel approach wherein we conceptualize the communication architecture among agents as a learnable graph.
Our proposed approach, CommFormer, efficiently optimize the communication graph and concurrently refines architectural parameters through gradient descent in an end-to-end manner.
arXiv Detail & Related papers (2024-05-14T12:40:25Z) - ProAgent: Building Proactive Cooperative Agents with Large Language
Models [89.53040828210945]
ProAgent is a novel framework that harnesses large language models to create proactive agents.
ProAgent can analyze the present state, and infer the intentions of teammates from observations.
ProAgent exhibits a high degree of modularity and interpretability, making it easily integrated into various coordination scenarios.
arXiv Detail & Related papers (2023-08-22T10:36:56Z) - Adaptive Coordination in Social Embodied Rearrangement [49.35582108902819]
We study zero-shot coordination (ZSC) in this task, where an agent collaborates with a new partner, emulating a scenario where a robot collaborates with a new human partner.
We propose Behavior Diversity Play (BDP), a novel ZSC approach that encourages diversity through a discriminability objective.
Our results demonstrate that BDP learns adaptive agents that can tackle visual coordination, and zero-shot generalize to new partners in unseen environments, achieving 35% higher success and 32% higher efficiency compared to baselines.
arXiv Detail & Related papers (2023-05-31T18:05:51Z) - Coordination with Humans via Strategy Matching [5.072077366588174]
We present an algorithm for autonomously recognizing available task-completion strategies by observing human-human teams performing a collaborative task.
By transforming team actions into low dimensional representations using hidden Markov models, we can identify strategies without prior knowledge.
Robot policies are learned on each of the identified strategies to construct a Mixture-of-Experts model that adapts to the task strategies of unseen human partners.
arXiv Detail & Related papers (2022-10-27T01:00:50Z) - Conditional Imitation Learning for Multi-Agent Games [89.897635970366]
We study the problem of conditional multi-agent imitation learning, where we have access to joint trajectory demonstrations at training time.
We propose a novel approach to address the difficulties of scalability and data scarcity.
Our model learns a low-rank subspace over ego and partner agent strategies, then infers and adapts to a new partner strategy by interpolating in the subspace.
arXiv Detail & Related papers (2022-01-05T04:40:13Z) - Distributed Adaptive Learning Under Communication Constraints [54.22472738551687]
This work examines adaptive distributed learning strategies designed to operate under communication constraints.
We consider a network of agents that must solve an online optimization problem from continual observation of streaming data.
arXiv Detail & Related papers (2021-12-03T19:23:48Z) - Behaviour-conditioned policies for cooperative reinforcement learning
tasks [41.74498230885008]
In various real-world tasks, an agent needs to cooperate with unknown partner agent types.
Deep reinforcement learning models can be trained to deliver the required functionality but are known to suffer from sample inefficiency and slow learning.
We suggest a method, where we synthetically produce populations of agents with different behavioural patterns together with ground truth data of their behaviour.
We additionally suggest an agent architecture, which can efficiently use the generated data and gain the meta-learning capability.
arXiv Detail & Related papers (2021-10-04T09:16:41Z) - On the Critical Role of Conventions in Adaptive Human-AI Collaboration [73.21967490610142]
We propose a learning framework that teases apart rule-dependent representation from convention-dependent representation.
We experimentally validate our approach on three collaborative tasks varying in complexity.
arXiv Detail & Related papers (2021-04-07T02:46:19Z) - Natural Emergence of Heterogeneous Strategies in Artificially
Intelligent Competitive Teams [0.0]
We develop a competitive multi agent environment called FortAttack in which two teams compete against each other.
We observe a natural emergence of heterogeneous behavior amongst homogeneous agents when such behavior can lead to the team's success.
We propose ensemble training, in which we utilize the evolved opponent strategies to train a single policy for friendly agents.
arXiv Detail & Related papers (2020-07-06T22:35:56Z) - Towards Open Ad Hoc Teamwork Using Graph-based Policy Learning [11.480994804659908]
We build on graph neural networks to learn agent models and joint-action value models under varying team compositions.
We empirically demonstrate that our approach successfully models the effects other agents have on the learner, leading to policies that robustly adapt to dynamic team compositions.
arXiv Detail & Related papers (2020-06-18T10:39:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.