Self-Attention Based Multi-Scale Graph Auto-Encoder Network of 3D Meshes
- URL: http://arxiv.org/abs/2507.05304v1
- Date: Mon, 07 Jul 2025 07:36:03 GMT
- Title: Self-Attention Based Multi-Scale Graph Auto-Encoder Network of 3D Meshes
- Authors: Saqib Nazir, Olivier Lézoray, Sébastien Bougleux,
- Abstract summary: 3D Geometric Mesh Network (3DGeoMeshNet), is a novel GCN-based framework that uses anisotropic convolution layers to learn both global and local features directly in the spatial domain.<n>Our architecture features a multi-scale encoder-decoder structure, where separate global and local pathways capture both large-scale geometric structures and fine-grained local details.
- Score: 1.573038298640368
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: 3D meshes are fundamental data representations for capturing complex geometric shapes in computer vision and graphics applications. While Convolutional Neural Networks (CNNs) have excelled in structured data like images, extending them to irregular 3D meshes is challenging due to the non-Euclidean nature of the data. Graph Convolutional Networks (GCNs) offer a solution by applying convolutions to graph-structured data, but many existing methods rely on isotropic filters or spectral decomposition, limiting their ability to capture both local and global mesh features. In this paper, we introduce 3D Geometric Mesh Network (3DGeoMeshNet), a novel GCN-based framework that uses anisotropic convolution layers to effectively learn both global and local features directly in the spatial domain. Unlike previous approaches that convert meshes into intermediate representations like voxel grids or point clouds, our method preserves the original polygonal mesh format throughout the reconstruction process, enabling more accurate shape reconstruction. Our architecture features a multi-scale encoder-decoder structure, where separate global and local pathways capture both large-scale geometric structures and fine-grained local details. Extensive experiments on the COMA dataset containing human faces demonstrate the efficiency of 3DGeoMeshNet in terms of reconstruction accuracy.
Related papers
- GALA: Geometry-Aware Local Adaptive Grids for Detailed 3D Generation [28.299293407423455]
GALA is a novel representation of 3D shapes that excels at capturing and reproducing complex geometry and surface details.
With our optimized C++/CUDA implementation, GALA can be fitted to an object in less than 10 seconds.
We provide a cascaded generation pipeline capable of generating 3D shapes with great geometric detail.
arXiv Detail & Related papers (2024-10-13T22:53:58Z) - Boosting Cross-Domain Point Classification via Distilling Relational Priors from 2D Transformers [59.0181939916084]
Traditional 3D networks mainly focus on local geometric details and ignore the topological structure between local geometries.
We propose a novel Priors Distillation (RPD) method to extract priors from the well-trained transformers on massive images.
Experiments on the PointDA-10 and the Sim-to-Real datasets verify that the proposed method consistently achieves the state-of-the-art performance of UDA for point cloud classification.
arXiv Detail & Related papers (2024-07-26T06:29:09Z) - T-Pixel2Mesh: Combining Global and Local Transformer for 3D Mesh Generation from a Single Image [84.08705684778666]
We propose a novel Transformer-boosted architecture, named T-Pixel2Mesh, inspired by the coarse-to-fine approach of P2M.
Specifically, we use a global Transformer to control the holistic shape and a local Transformer to refine the local geometry details.
Our experiments on ShapeNet demonstrate state-of-the-art performance, while results on real-world data show the generalization capability.
arXiv Detail & Related papers (2024-03-20T15:14:22Z) - Flattening-Net: Deep Regular 2D Representation for 3D Point Cloud
Analysis [66.49788145564004]
We present an unsupervised deep neural architecture called Flattening-Net to represent irregular 3D point clouds of arbitrary geometry and topology.
Our methods perform favorably against the current state-of-the-art competitors.
arXiv Detail & Related papers (2022-12-17T15:05:25Z) - Dual Octree Graph Networks for Learning Adaptive Volumetric Shape
Representations [21.59311861556396]
Our method encodes the volumetric field of a 3D shape with an adaptive feature volume organized by an octree.
An encoder-decoder network is designed to learn the adaptive feature volume based on the graph convolutions over the dual graph of octree nodes.
Our method effectively encodes shape details, enables fast 3D shape reconstruction, and exhibits good generality for modeling 3D shapes out of training categories.
arXiv Detail & Related papers (2022-05-05T17:56:34Z) - Neural Convolutional Surfaces [59.172308741945336]
This work is concerned with a representation of shapes that disentangles fine, local and possibly repeating geometry, from global, coarse structures.
We show that this approach achieves better neural shape compression than the state of the art, as well as enabling manipulation and transfer of shape details.
arXiv Detail & Related papers (2022-04-05T15:40:11Z) - Neural Geometric Level of Detail: Real-time Rendering with Implicit 3D
Shapes [77.6741486264257]
We introduce an efficient neural representation that, for the first time, enables real-time rendering of high-fidelity neural SDFs.
We show that our representation is 2-3 orders of magnitude more efficient in terms of rendering speed compared to previous works.
arXiv Detail & Related papers (2021-01-26T18:50:22Z) - Learning Local Neighboring Structure for Robust 3D Shape Representation [143.15904669246697]
Representation learning for 3D meshes is important in many computer vision and graphics applications.
We propose a local structure-aware anisotropic convolutional operation (LSA-Conv)
Our model produces significant improvement in 3D shape reconstruction compared to state-of-the-art methods.
arXiv Detail & Related papers (2020-04-21T13:40:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.