Solar Flare Prediction Using Long Short-term Memory (LSTM) and Decomposition-LSTM with Sliding Window Pattern Recognition
- URL: http://arxiv.org/abs/2507.05313v2
- Date: Tue, 15 Jul 2025 07:37:58 GMT
- Title: Solar Flare Prediction Using Long Short-term Memory (LSTM) and Decomposition-LSTM with Sliding Window Pattern Recognition
- Authors: Zeinab Hassani, Davud Mohammadpur, Hossein Safari,
- Abstract summary: dataset spans from 2003 to 2023 and includes 151,071 flare events.<n>sliding window technique is employed to detect temporal quasi-patterns in both irregular and regularized flare time series.<n>LSTM and DLSTM models are trained on sequences of peak flux and waiting times from irregular time series, while LSTM and DLSTM, integrated with an ensemble approach, are applied to sliding windows of regularized time series with a 3-hour interval.<n>DLSTM with an ensemble approach on regularized time series outperforms other models, offering more accurate large-flare forecasts with fewer false errors compared to models trained on irregular time series
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We investigate the use of Long Short-Term Memory (LSTM) and Decomposition-LSTM (DLSTM) networks, combined with an ensemble algorithm, to predict solar flare occurrences using time-series data from the GOES catalog. The dataset spans from 2003 to 2023 and includes 151,071 flare events. Among approximately possible patterns, 7,552 yearly pattern windows are identified, highlighting the challenge of long-term forecasting due to the Sun's complex, self-organized criticality-driven behavior. A sliding window technique is employed to detect temporal quasi-patterns in both irregular and regularized flare time series. Regularization reduces complexity, enhances large flare activity, and captures active days more effectively. To address class imbalance, resampling methods are applied. LSTM and DLSTM models are trained on sequences of peak fluxes and waiting times from irregular time series, while LSTM and DLSTM, integrated with an ensemble approach, are applied to sliding windows of regularized time series with a 3-hour interval. Performance metrics, particularly TSS (0.74), recall (0.95) and the area under the curve (AUC=0.87) in the receiver operating characteristic (ROC), indicate that DLSTM with an ensemble approach on regularized time series outperforms other models, offering more accurate large-flare forecasts with fewer false errors compared to models trained on irregular time series. The superior performance of DLSTM is attributed to its ability to decompose time series into trend and seasonal components, effectively isolating random noise. This study underscores the potential of advanced machine learning techniques for solar flare prediction and highlights the importance of incorporating various solar cycle phases and resampling strategies to enhance forecasting reliability.
Related papers
- LSCD: Lomb-Scargle Conditioned Diffusion for Time series Imputation [55.800319453296886]
Time series with missing or irregularly sampled data are a persistent challenge in machine learning.<n>We introduce a different Lombiable--Scargle layer that enables a reliable computation of the power spectrum of irregularly sampled data.
arXiv Detail & Related papers (2025-06-20T14:48:42Z) - LLM-PS: Empowering Large Language Models for Time Series Forecasting with Temporal Patterns and Semantics [56.99021951927683]
Time Series Forecasting (TSF) is critical in many real-world domains like financial planning and health monitoring.<n>Existing Large Language Models (LLMs) usually perform suboptimally because they neglect the inherent characteristics of time series data.<n>We propose LLM-PS to empower the LLM for TSF by learning the fundamental textitPatterns and meaningful textitSemantics from time series data.
arXiv Detail & Related papers (2025-03-12T11:45:11Z) - MFRS: A Multi-Frequency Reference Series Approach to Scalable and Accurate Time-Series Forecasting [51.94256702463408]
Time series predictability is derived from periodic characteristics at different frequencies.<n>We propose a novel time series forecasting method based on multi-frequency reference series correlation analysis.<n> Experiments on major open and synthetic datasets show state-of-the-art performance.
arXiv Detail & Related papers (2025-03-11T11:40:14Z) - LMS-AutoTSF: Learnable Multi-Scale Decomposition and Integrated Autocorrelation for Time Series Forecasting [4.075971633195745]
We introduce LMS-AutoTSF, a novel time series forecasting architecture that incorporates autocorrelation.<n>Unlike models that rely on predefined trend and seasonal components, LMS-AutoTSF employs two separate encoders per scale.<n>A key innovation in our approach is the integration of autocorrelation, achieved by computing lagged differences in time steps.
arXiv Detail & Related papers (2024-12-09T09:31:58Z) - TSLANet: Rethinking Transformers for Time Series Representation Learning [19.795353886621715]
Time series data is characterized by its intrinsic long and short-range dependencies.
We introduce a novel Time Series Lightweight Network (TSLANet) as a universal convolutional model for diverse time series tasks.
Our experiments demonstrate that TSLANet outperforms state-of-the-art models in various tasks spanning classification, forecasting, and anomaly detection.
arXiv Detail & Related papers (2024-04-12T13:41:29Z) - Parsimony or Capability? Decomposition Delivers Both in Long-term Time Series Forecasting [46.63798583414426]
Long-term time series forecasting (LTSF) represents a critical frontier in time series analysis.
Our study demonstrates, through both analytical and empirical evidence, that decomposition is key to containing excessive model inflation.
Remarkably, by tailoring decomposition to the intrinsic dynamics of time series data, our proposed model outperforms existing benchmarks.
arXiv Detail & Related papers (2024-01-22T13:15:40Z) - Correlation-aware Spatial-Temporal Graph Learning for Multivariate
Time-series Anomaly Detection [67.60791405198063]
We propose a correlation-aware spatial-temporal graph learning (termed CST-GL) for time series anomaly detection.
CST-GL explicitly captures the pairwise correlations via a multivariate time series correlation learning module.
A novel anomaly scoring component is further integrated into CST-GL to estimate the degree of an anomaly in a purely unsupervised manner.
arXiv Detail & Related papers (2023-07-17T11:04:27Z) - Extreme-Long-short Term Memory for Time-series Prediction [0.0]
Long Short-Term Memory (LSTM) is a new type of Recurrent Neural Networks (RNN)
In this paper, we propose an advanced LSTM algorithm, the Extreme Long Short-Term Memory (E-LSTM)
The new E-LSTM requires only 2 epochs to obtain the results of the 7th epoch traditional LSTM.
arXiv Detail & Related papers (2022-10-15T09:45:48Z) - Grouped self-attention mechanism for a memory-efficient Transformer [64.0125322353281]
Real-world tasks such as forecasting weather, electricity consumption, and stock market involve predicting data that vary over time.
Time-series data are generally recorded over a long period of observation with long sequences owing to their periodic characteristics and long-range dependencies over time.
We propose two novel modules, Grouped Self-Attention (GSA) and Compressed Cross-Attention (CCA)
Our proposed model efficiently exhibited reduced computational complexity and performance comparable to or better than existing methods.
arXiv Detail & Related papers (2022-10-02T06:58:49Z) - The effect of phased recurrent units in the classification of multiple
catalogs of astronomical lightcurves [0.0]
We study the effectiveness of the LSTM and Phased LSTM based architectures for the classification of astronomical lightcurves.
Our findings show that LSTM outperformed PLSTM on 6/7 datasets.
arXiv Detail & Related papers (2021-06-07T16:01:38Z) - Prediction of financial time series using LSTM and data denoising
methods [0.29923891863939933]
This paper proposes an ensemble method based on data denoising methods, including the wavelet transform (WT) and singular spectrum analysis (SSA)
As WT and SSA can extract useful information from the original sequence and avoid overfitting, the hybrid model can better grasp the sequence pattern of the closing price of the DJIA.
arXiv Detail & Related papers (2021-03-05T07:32:36Z) - Convolutional Tensor-Train LSTM for Spatio-temporal Learning [116.24172387469994]
We propose a higher-order LSTM model that can efficiently learn long-term correlations in the video sequence.
This is accomplished through a novel tensor train module that performs prediction by combining convolutional features across time.
Our results achieve state-of-the-art performance-art in a wide range of applications and datasets.
arXiv Detail & Related papers (2020-02-21T05:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.