LoomNet: Enhancing Multi-View Image Generation via Latent Space Weaving
- URL: http://arxiv.org/abs/2507.05499v1
- Date: Mon, 07 Jul 2025 21:46:50 GMT
- Title: LoomNet: Enhancing Multi-View Image Generation via Latent Space Weaving
- Authors: Giulio Federico, Fabio Carrara, Claudio Gennaro, Giuseppe Amato, Marco Di Benedetto,
- Abstract summary: LoomNet is a novel multi-view diffusion architecture that produces coherent images by applying the same diffusion model multiple times.<n>In experiments, LoomNet outperforms state-of-the-art methods on both image quality and reconstruction metrics.
- Score: 7.999454304974351
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Generating consistent multi-view images from a single image remains challenging. Lack of spatial consistency often degrades 3D mesh quality in surface reconstruction. To address this, we propose LoomNet, a novel multi-view diffusion architecture that produces coherent images by applying the same diffusion model multiple times in parallel to collaboratively build and leverage a shared latent space for view consistency. Each viewpoint-specific inference generates an encoding representing its own hypothesis of the novel view from a given camera pose, which is projected onto three orthogonal planes. For each plane, encodings from all views are fused into a single aggregated plane. These aggregated planes are then processed to propagate information and interpolate missing regions, combining the hypotheses into a unified, coherent interpretation. The final latent space is then used to render consistent multi-view images. LoomNet generates 16 high-quality and coherent views in just 15 seconds. In our experiments, LoomNet outperforms state-of-the-art methods on both image quality and reconstruction metrics, also showing creativity by producing diverse, plausible novel views from the same input.
Related papers
- VistaDream: Sampling multiview consistent images for single-view scene reconstruction [63.991582576387856]
VistaDream is a framework to reconstruct a 3D scene from a single-view image.
Recent diffusion models enable generating high-quality novel-view images from a single-view input image.
arXiv Detail & Related papers (2024-10-22T10:55:59Z) - Focus on Neighbors and Know the Whole: Towards Consistent Dense Multiview Text-to-Image Generator for 3D Creation [64.07560335451723]
CoSER is a novel consistent dense Multiview Text-to-Image Generator for Text-to-3D.
It achieves both efficiency and quality by meticulously learning neighbor-view coherence.
It aggregates information along motion paths explicitly defined by physical principles to refine details.
arXiv Detail & Related papers (2024-08-23T15:16:01Z) - MultiDiff: Consistent Novel View Synthesis from a Single Image [60.04215655745264]
MultiDiff is a novel approach for consistent novel view synthesis of scenes from a single RGB image.
Our results demonstrate that MultiDiff outperforms state-of-the-art methods on the challenging, real-world datasets RealEstate10K and ScanNet.
arXiv Detail & Related papers (2024-06-26T17:53:51Z) - Envision3D: One Image to 3D with Anchor Views Interpolation [18.31796952040799]
We present Envision3D, a novel method for efficiently generating high-quality 3D content from a single image.
It is capable of generating high-quality 3D content in terms of texture and geometry, surpassing previous image-to-3D baseline methods.
arXiv Detail & Related papers (2024-03-13T18:46:33Z) - ConsistNet: Enforcing 3D Consistency for Multi-view Images Diffusion [61.37481051263816]
Given a single image of a 3D object, this paper proposes a method (named ConsistNet) that is able to generate multiple images of the same object.
Our method effectively learns 3D consistency over a frozen Zero123 backbone and can generate 16 surrounding views of the object within 40 seconds on a single A100 GPU.
arXiv Detail & Related papers (2023-10-16T12:29:29Z) - SyncDreamer: Generating Multiview-consistent Images from a Single-view Image [59.75474518708409]
A novel diffusion model called SyncDreamer generates multiview-consistent images from a single-view image.
Experiments show that SyncDreamer generates images with high consistency across different views.
arXiv Detail & Related papers (2023-09-07T02:28:04Z) - Vision Transformer for NeRF-Based View Synthesis from a Single Input
Image [49.956005709863355]
We propose to leverage both the global and local features to form an expressive 3D representation.
To synthesize a novel view, we train a multilayer perceptron (MLP) network conditioned on the learned 3D representation to perform volume rendering.
Our method can render novel views from only a single input image and generalize across multiple object categories using a single model.
arXiv Detail & Related papers (2022-07-12T17:52:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.