Predicting mutational effects on protein binding from folding energy
- URL: http://arxiv.org/abs/2507.05502v1
- Date: Mon, 07 Jul 2025 21:55:57 GMT
- Title: Predicting mutational effects on protein binding from folding energy
- Authors: Arthur Deng, Karsten Householder, Fang Wu, Sebastian Thrun, K. Christopher Garcia, Brian Trippe,
- Abstract summary: We propose a transfer-learning approach that leverages advances in protein sequence modeling and folding stability prediction.<n>We show that using a pre-trained inverse-folding model as a proxy for folding energy provides strong zero-shot performance.<n>The resulting predictor, StaB-ddG, is the first deep learning predictor to match the accuracy of the state-of-the-art empirical force-field method FoldX.
- Score: 3.2750365257196803
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accurate estimation of mutational effects on protein-protein binding energies is an open problem with applications in structural biology and therapeutic design. Several deep learning predictors for this task have been proposed, but, presumably due to the scarcity of binding data, these methods underperform computationally expensive estimates based on empirical force fields. In response, we propose a transfer-learning approach that leverages advances in protein sequence modeling and folding stability prediction for this task. The key idea is to parameterize the binding energy as the difference between the folding energy of the protein complex and the sum of the folding energies of its binding partners. We show that using a pre-trained inverse-folding model as a proxy for folding energy provides strong zero-shot performance, and can be fine-tuned with (1) copious folding energy measurements and (2) more limited binding energy measurements. The resulting predictor, StaB-ddG, is the first deep learning predictor to match the accuracy of the state-of-the-art empirical force-field method FoldX, while offering an over 1,000x speed-up.
Related papers
- Mass Balance Approximation of Unfolding Improves Potential-Like Methods for Protein Stability Predictions [0.0]
Deep-learning strategies have pushed the field forward, but their use in standard methods remains limited due to resource demands.<n>This study shows that incorporating a mass-balance correction (MBC) to account for the unfolded state significantly enhances these methods.<n>While many machine learning models partially model this balance, our analysis suggests that a refined representation of the unfolded state may improve the predictive performance.
arXiv Detail & Related papers (2025-04-09T11:53:02Z) - Boltzmann-Aligned Inverse Folding Model as a Predictor of Mutational Effects on Protein-Protein Interactions [48.58317905849438]
Predicting the change in binding free energy ($Delta Delta G$) is crucial for understanding and modulating protein-protein interactions.
We propose the Boltzmann Alignment technique to transfer knowledge from pre-trained inverse folding models to $Delta Delta G$ prediction.
arXiv Detail & Related papers (2024-10-12T14:13:42Z) - Loop-Diffusion: an equivariant diffusion model for designing and scoring protein loops [0.0]
Loop-Diffusion is an energy-based diffusion model that learns an energy function that generalizes to functional prediction tasks.
We evaluate Loop-Diffusion's performance on scoring TCR-pMHC interfaces and demonstrate state-of-the-art results in recognizing binding-enhancing mutations.
arXiv Detail & Related papers (2024-09-26T18:34:06Z) - SPIN: SE(3)-Invariant Physics Informed Network for Binding Affinity Prediction [3.406882192023597]
Accurate prediction of protein-ligand binding affinity is crucial for drug development.
Traditional methods often fail to accurately model the complex's spatial information.
We propose SPIN, a model that incorporates various inductive biases applicable to this task.
arXiv Detail & Related papers (2024-07-10T08:40:07Z) - Re-Dock: Towards Flexible and Realistic Molecular Docking with Diffusion
Bridge [69.80471117520719]
Re-Dock is a novel diffusion bridge generative model extended to geometric manifold.
We propose energy-to-geometry mapping inspired by the Newton-Euler equation to co-model the binding energy and conformations.
Experiments on designed benchmark datasets including apo-dock and cross-dock demonstrate our model's superior effectiveness and efficiency over current methods.
arXiv Detail & Related papers (2024-02-18T05:04:50Z) - Efficiently Predicting Protein Stability Changes Upon Single-point
Mutation with Large Language Models [51.57843608615827]
The ability to precisely predict protein thermostability is pivotal for various subfields and applications in biochemistry.
We introduce an ESM-assisted efficient approach that integrates protein sequence and structural features to predict the thermostability changes in protein upon single-point mutations.
arXiv Detail & Related papers (2023-12-07T03:25:49Z) - FlexVDW: A machine learning approach to account for protein flexibility
in ligand docking [4.511923587827301]
Deep learning model trained to take receptor flexibility into account implicitly when predicting van der Waals energy.
We show that incorporating this machine-learned energy term into a state-of-the-art physics-based scoring function improves small molecule ligand pose prediction results.
arXiv Detail & Related papers (2023-03-20T23:19:05Z) - State-specific protein-ligand complex structure prediction with a
multi-scale deep generative model [68.28309982199902]
We present NeuralPLexer, a computational approach that can directly predict protein-ligand complex structures.
Our study suggests that a data-driven approach can capture the structural cooperativity between proteins and small molecules, showing promise in accelerating the design of enzymes, drug molecules, and beyond.
arXiv Detail & Related papers (2022-09-30T01:46:38Z) - EBM-Fold: Fully-Differentiable Protein Folding Powered by Energy-based
Models [53.17320541056843]
We propose a fully-differentiable approach for protein structure optimization, guided by a data-driven generative network.
Our EBM-Fold approach can efficiently produce high-quality decoys, compared against traditional Rosetta-based structure optimization routines.
arXiv Detail & Related papers (2021-05-11T03:40:29Z) - Energy-based models for atomic-resolution protein conformations [88.68597850243138]
We propose an energy-based model (EBM) of protein conformations that operates at atomic scale.
The model is trained solely on crystallized protein data.
An investigation of the model's outputs and hidden representations finds that it captures physicochemical properties relevant to protein energy.
arXiv Detail & Related papers (2020-04-27T20:45:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.