DREAM: Document Reconstruction via End-to-end Autoregressive Model
- URL: http://arxiv.org/abs/2507.05805v1
- Date: Tue, 08 Jul 2025 09:24:07 GMT
- Title: DREAM: Document Reconstruction via End-to-end Autoregressive Model
- Authors: Xin Li, Mingming Gong, Yunfei Wu, Jianxin Dai, Antai Guo, Xinghua Jiang, Haoyu Cao, Yinsong Liu, Deqiang Jiang, Xing Sun,
- Abstract summary: We present an innovative autoregressive model specifically designed for document reconstruction, referred to as Document Reconstruction via End-to-end Autoregressive Model (DREAM)<n>We establish a standardized definition of the document reconstruction task, and introduce a novel Document Similarity Metric (DSM) and DocRec1K dataset for assessing the performance of the task.
- Score: 53.51754520966657
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Document reconstruction constitutes a significant facet of document analysis and recognition, a field that has been progressively accruing interest within the scholarly community. A multitude of these researchers employ an array of document understanding models to generate predictions on distinct subtasks, subsequently integrating their results into a holistic document reconstruction format via heuristic principles. Nevertheless, these multi-stage methodologies are hindered by the phenomenon of error propagation, resulting in suboptimal performance. Furthermore, contemporary studies utilize generative models to extract the logical sequence of plain text, tables and mathematical expressions in an end-to-end process. However, this approach is deficient in preserving the information related to element layouts, which are vital for document reconstruction. To surmount these aforementioned limitations, we in this paper present an innovative autoregressive model specifically designed for document reconstruction, referred to as Document Reconstruction via End-to-end Autoregressive Model (DREAM). DREAM transmutes the text image into a sequence of document reconstruction in a comprehensive, end-to-end process, encapsulating a broader spectrum of document element information. In addition, we establish a standardized definition of the document reconstruction task, and introduce a novel Document Similarity Metric (DSM) and DocRec1K dataset for assessing the performance of the task. Empirical results substantiate that our methodology attains unparalleled performance in the realm of document reconstruction. Furthermore, the results on a variety of subtasks, encompassing document layout analysis, text recognition, table structure recognition, formula recognition and reading order detection, indicate that our model is competitive and compatible with various tasks.
Related papers
- Unified Multimodal Interleaved Document Representation for Retrieval [57.65409208879344]
We propose a method that holistically embeds documents interleaved with multiple modalities.<n>We merge the representations of segmented passages into one single document representation.<n>We show that our approach substantially outperforms relevant baselines.
arXiv Detail & Related papers (2024-10-03T17:49:09Z) - DocSynthv2: A Practical Autoregressive Modeling for Document Generation [43.84027661517748]
This paper proposes a novel approach called Doc Synthv2 through the development of a simple yet effective autoregressive structured model.
Our model, distinct in its integration of both layout and textual cues, marks a step beyond existing layout-generation approaches.
arXiv Detail & Related papers (2024-06-12T16:00:16Z) - Peek Across: Improving Multi-Document Modeling via Cross-Document
Question-Answering [49.85790367128085]
We pre-training a generic multi-document model from a novel cross-document question answering pre-training objective.
This novel multi-document QA formulation directs the model to better recover cross-text informational relations.
Unlike prior multi-document models that focus on either classification or summarization tasks, our pre-training objective formulation enables the model to perform tasks that involve both short text generation and long text generation.
arXiv Detail & Related papers (2023-05-24T17:48:40Z) - Unified Pretraining Framework for Document Understanding [52.224359498792836]
We present UDoc, a new unified pretraining framework for document understanding.
UDoc is designed to support most document understanding tasks, extending the Transformer to take multimodal embeddings as input.
An important feature of UDoc is that it learns a generic representation by making use of three self-supervised losses.
arXiv Detail & Related papers (2022-04-22T21:47:04Z) - Modeling Endorsement for Multi-Document Abstractive Summarization [10.166639983949887]
A crucial difference between single- and multi-document summarization is how salient content manifests itself in the document(s)
In this paper, we model the cross-document endorsement effect and its utilization in multiple document summarization.
Our method generates a synopsis from each document, which serves as an endorser to identify salient content from other documents.
arXiv Detail & Related papers (2021-10-15T03:55:42Z) - WSL-DS: Weakly Supervised Learning with Distant Supervision for Query
Focused Multi-Document Abstractive Summarization [16.048329028104643]
In the Query Focused Multi-Document Summarization (QF-MDS) task, a set of documents and a query are given where the goal is to generate a summary from these documents.
One major challenge for this task is the lack of availability of labeled training datasets.
We propose a novel weakly supervised learning approach via utilizing distant supervision.
arXiv Detail & Related papers (2020-11-03T02:02:55Z) - Self-supervised Deep Reconstruction of Mixed Strip-shredded Text
Documents [63.41717168981103]
This work extends our previous deep learning method for single-page reconstruction to a more realistic/complex scenario.
In our approach, the compatibility evaluation is modeled as a two-class (valid or invalid) pattern recognition problem.
The proposed method outperforms the competing ones on complex scenarios, achieving accuracy superior to 90%.
arXiv Detail & Related papers (2020-07-01T21:48:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.