DFYP: A Dynamic Fusion Framework with Spectral Channel Attention and Adaptive Operator learning for Crop Yield Prediction
- URL: http://arxiv.org/abs/2507.05849v1
- Date: Tue, 08 Jul 2025 10:24:04 GMT
- Title: DFYP: A Dynamic Fusion Framework with Spectral Channel Attention and Adaptive Operator learning for Crop Yield Prediction
- Authors: Juli Zhang, Zeyu Yan, Jing Zhang, Qiguang Miao, Quan Wang,
- Abstract summary: DFYP is a novel Dynamic Fusion framework for crop Yield Prediction.<n>It combines spectral channel attention, edge-adaptive spatial modeling and a learnable fusion mechanism.<n> DFYP consistently outperforms current state-of-the-art baselines in RMSE, MAE, and R2.
- Score: 18.24061967822792
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate remote sensing-based crop yield prediction remains a fundamental challenging task due to complex spatial patterns, heterogeneous spectral characteristics, and dynamic agricultural conditions. Existing methods often suffer from limited spatial modeling capacity, weak generalization across crop types and years. To address these challenges, we propose DFYP, a novel Dynamic Fusion framework for crop Yield Prediction, which combines spectral channel attention, edge-adaptive spatial modeling and a learnable fusion mechanism to improve robustness across diverse agricultural scenarios. Specifically, DFYP introduces three key components: (1) a Resolution-aware Channel Attention (RCA) module that enhances spectral representation by adaptively reweighting input channels based on resolution-specific characteristics; (2) an Adaptive Operator Learning Network (AOL-Net) that dynamically selects operators for convolutional kernels to improve edge-sensitive spatial feature extraction under varying crop and temporal conditions; and (3) a dual-branch architecture with a learnable fusion mechanism, which jointly models local spatial details and global contextual information to support cross-resolution and cross-crop generalization. Extensive experiments on multi-year datasets MODIS and multi-crop dataset Sentinel-2 demonstrate that DFYP consistently outperforms current state-of-the-art baselines in RMSE, MAE, and R2 across different spatial resolutions, crop types, and time periods, showcasing its effectiveness and robustness for real-world agricultural monitoring.
Related papers
- Wavelet-Guided Dual-Frequency Encoding for Remote Sensing Change Detection [67.84730634802204]
Change detection in remote sensing imagery plays a vital role in various engineering applications, such as natural disaster monitoring, urban expansion tracking, and infrastructure management.<n>Most existing methods still rely on spatial-domain modeling, where the limited diversity of feature representations hinders the detection of subtle change regions.<n>We observe that frequency-domain feature modeling particularly in the wavelet domain amplify fine-grained differences in frequency components, enhancing the perception of edge changes that are challenging to capture in the spatial domain.
arXiv Detail & Related papers (2025-08-07T11:14:16Z) - DSFormer: A Dual-Scale Cross-Learning Transformer for Visual Place Recognition [16.386674597850778]
We propose a novel framework that integrates Dual-Scale-Former (DSFormer), a Transformer-based cross-learning module, with an innovative block clustering strategy.<n>Our approach achieves state-of-the-art performance across most benchmark datasets.
arXiv Detail & Related papers (2025-07-24T14:29:30Z) - Controllable diffusion-based generation for multi-channel biological data [66.44042377817074]
This work proposes a unified diffusion framework for controllable generation over structured and spatial biological data.<n>We show state-of-the-art performance across both spatial and non-spatial prediction tasks, including protein imputation in IMC and gene-to-protein prediction in single-cell datasets.
arXiv Detail & Related papers (2025-06-24T00:56:21Z) - TerraFM: A Scalable Foundation Model for Unified Multisensor Earth Observation [65.74990259650984]
We introduce TerraFM, a scalable self-supervised learning model that leverages globally distributed Sentinel-1 and Sentinel-2 imagery.<n>Our training strategy integrates local-global contrastive learning and introduces a dual-centering mechanism.<n>TerraFM achieves strong generalization on both classification and segmentation tasks, outperforming prior models on GEO-Bench and Copernicus-Bench.
arXiv Detail & Related papers (2025-06-06T17:59:50Z) - FEAT: Full-Dimensional Efficient Attention Transformer for Medical Video Generation [14.903360987684483]
We propose FEAT, a full-dimensional efficient attention Transformer for high-quality dynamic medical videos.<n>We evaluate FEAT on standard benchmarks and downstream tasks, demonstrating that FEAT-S, with only 23% of the parameters of the state-of-the-art model Endora, achieves comparable or even superior performance.
arXiv Detail & Related papers (2025-06-05T12:31:02Z) - Temporal-Spectral-Spatial Unified Remote Sensing Dense Prediction [62.376936772702905]
Current deep learning architectures for remote sensing are fundamentally rigid.<n>We introduce the Spatial-Temporal-Spectral Unified Network (STSUN) for unified modeling.<n> STSUN can adapt to input and output data with arbitrary spatial sizes, temporal lengths, and spectral bands.<n>It unifies disparate dense prediction tasks within a single architecture by conditioning the model on trainable task embeddings.
arXiv Detail & Related papers (2025-05-18T07:39:17Z) - RSRWKV: A Linear-Complexity 2D Attention Mechanism for Efficient Remote Sensing Vision Task [20.16344973940904]
High-resolution remote sensing analysis faces challenges due to scene complexity and scale diversity.<n>We propose RSRWKV, featuring a novel 2D-WKV scanning mechanism that bridges sequential processing and 2D spatial reasoning.
arXiv Detail & Related papers (2025-03-26T10:03:46Z) - PFSD: A Multi-Modal Pedestrian-Focus Scene Dataset for Rich Tasks in Semi-Structured Environments [73.80718037070773]
We present the multi-modal Pedestrian-Focused Scene dataset, rigorously annotated in semi-structured scenes with the format of nuScenes.<n>We also propose a novel Hybrid Multi-Scale Fusion Network (HMFN) to detect pedestrians in densely populated and occluded scenarios.
arXiv Detail & Related papers (2025-02-21T09:57:53Z) - Cross-Scan Mamba with Masked Training for Robust Spectral Imaging [51.557804095896174]
We propose the Cross-Scanning Mamba, named CS-Mamba, that employs a Spatial-Spectral SSM for global-local balanced context encoding.<n>Experiment results show that our CS-Mamba achieves state-of-the-art performance and the masked training method can better reconstruct smooth features to improve the visual quality.
arXiv Detail & Related papers (2024-08-01T15:14:10Z) - CMTNet: Convolutional Meets Transformer Network for Hyperspectral Images Classification [3.821081081400729]
Current convolutional neural networks (CNNs) focus on local features in hyperspectral data.<n> Transformer framework excels at extracting global features from hyperspectral imagery.<n>This research introduces the Convolutional Meet Transformer Network (CMTNet)
arXiv Detail & Related papers (2024-06-20T07:56:51Z) - SFANet: Spatial-Frequency Attention Network for Weather Forecasting [54.470205739015434]
Weather forecasting plays a critical role in various sectors, driving decision-making and risk management.
Traditional methods often struggle to capture the complex dynamics of meteorological systems.
We propose a novel framework designed to address these challenges and enhance the accuracy of weather prediction.
arXiv Detail & Related papers (2024-05-29T08:00:15Z) - Dual-scale Enhanced and Cross-generative Consistency Learning for Semi-supervised Medical Image Segmentation [49.57907601086494]
Medical image segmentation plays a crucial role in computer-aided diagnosis.
We propose a novel Dual-scale Enhanced and Cross-generative consistency learning framework for semi-supervised medical image (DEC-Seg)
arXiv Detail & Related papers (2023-12-26T12:56:31Z) - An Unsupervised Machine Learning Approach for Ground-Motion Spectra
Clustering and Selection [6.3376363722490145]
This paper presents an unsupervised machine learning algorithm to extract defining characteristics of earthquake ground-motion spectra.
A latent feature is a low-dimensional machine-discovered spectral characteristic learned through nonlinear relationships of a neural network autoencoder.
Three examples are presented to validate this approach, including the use of synthetic and field recorded ground-motion datasets.
arXiv Detail & Related papers (2022-12-06T18:02:55Z) - CSformer: Bridging Convolution and Transformer for Compressive Sensing [65.22377493627687]
This paper proposes a hybrid framework that integrates the advantages of leveraging detailed spatial information from CNN and the global context provided by transformer for enhanced representation learning.
The proposed approach is an end-to-end compressive image sensing method, composed of adaptive sampling and recovery.
The experimental results demonstrate the effectiveness of the dedicated transformer-based architecture for compressive sensing.
arXiv Detail & Related papers (2021-12-31T04:37:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.