Decomposing the Time Series Forecasting Pipeline: A Modular Approach for Time Series Representation, Information Extraction, and Projection
- URL: http://arxiv.org/abs/2507.05891v1
- Date: Tue, 08 Jul 2025 11:26:42 GMT
- Title: Decomposing the Time Series Forecasting Pipeline: A Modular Approach for Time Series Representation, Information Extraction, and Projection
- Authors: Robert Leppich, Michael Stenger, André Bauer, Samuel Kounev,
- Abstract summary: Time series forecasting remains a challenging task, demanding effective sequence representation, meaningful information extraction, and precise future projection.<n>This work decomposes the time series forecasting pipeline into three core stages: input sequence representation, information extraction and memory construction, and final target projection.<n>Our models achieve state-of-the-art forecasting accuracy while greatly enhancing computational efficiency, with reduced training and inference times and a lower parameter count.
- Score: 2.5216923314390733
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With the advent of Transformers, time series forecasting has seen significant advances, yet it remains challenging due to the need for effective sequence representation, memory construction, and accurate target projection. Time series forecasting remains a challenging task, demanding effective sequence representation, meaningful information extraction, and precise future projection. Each dataset and forecasting configuration constitutes a distinct task, each posing unique challenges the model must overcome to produce accurate predictions. To systematically address these task-specific difficulties, this work decomposes the time series forecasting pipeline into three core stages: input sequence representation, information extraction and memory construction, and final target projection. Within each stage, we investigate a range of architectural configurations to assess the effectiveness of various modules, such as convolutional layers for feature extraction and self-attention mechanisms for information extraction, across diverse forecasting tasks, including evaluations on seven benchmark datasets. Our models achieve state-of-the-art forecasting accuracy while greatly enhancing computational efficiency, with reduced training and inference times and a lower parameter count. The source code is available at https://github.com/RobertLeppich/REP-Net.
Related papers
- Enhancing Foundation Models for Time Series Forecasting via Wavelet-based Tokenization [74.3339999119713]
We develop a wavelet-based tokenizer that allows models to learn complex representations directly in the space of time-localized frequencies.<n>Our method first scales and decomposes the input time series, then thresholds and quantizes the wavelet coefficients, and finally pre-trains an autoregressive model to forecast coefficients for the forecast horizon.
arXiv Detail & Related papers (2024-12-06T18:22:59Z) - Timer-XL: Long-Context Transformers for Unified Time Series Forecasting [67.83502953961505]
We present Timer-XL, a causal Transformer for unified time series forecasting.<n>Based on large-scale pre-training, Timer-XL achieves state-of-the-art zero-shot performance.
arXiv Detail & Related papers (2024-10-07T07:27:39Z) - Time Series Representation Models [2.724184832774005]
Time series analysis remains a major challenge due to its sparse characteristics, high dimensionality, and inconsistent data quality.
Recent advancements in transformer-based techniques have enhanced capabilities in forecasting and imputation.
We propose a new architectural concept for time series analysis based on introspection.
arXiv Detail & Related papers (2024-05-28T13:25:31Z) - Unified Training of Universal Time Series Forecasting Transformers [104.56318980466742]
We present a Masked-based Universal Time Series Forecasting Transformer (Moirai)
Moirai is trained on our newly introduced Large-scale Open Time Series Archive (LOTSA) featuring over 27B observations across nine domains.
Moirai achieves competitive or superior performance as a zero-shot forecaster when compared to full-shot models.
arXiv Detail & Related papers (2024-02-04T20:00:45Z) - Timer: Generative Pre-trained Transformers Are Large Time Series Models [83.03091523806668]
This paper aims at the early development of large time series models (LTSM)
During pre-training, we curate large-scale datasets with up to 1 billion time points.
To meet diverse application needs, we convert forecasting, imputation, and anomaly detection of time series into a unified generative task.
arXiv Detail & Related papers (2024-02-04T06:55:55Z) - Distillation Enhanced Time Series Forecasting Network with Momentum Contrastive Learning [7.4106801792345705]
We propose DE-TSMCL, an innovative distillation enhanced framework for long sequence time series forecasting.
Specifically, we design a learnable data augmentation mechanism which adaptively learns whether to mask a timestamp.
Then, we propose a contrastive learning task with momentum update to explore inter-sample and intra-temporal correlations of time series.
By developing model loss from multiple tasks, we can learn effective representations for downstream forecasting task.
arXiv Detail & Related papers (2024-01-31T12:52:10Z) - Pushing the Limits of Pre-training for Time Series Forecasting in the
CloudOps Domain [54.67888148566323]
We introduce three large-scale time series forecasting datasets from the cloud operations domain.
We show it is a strong zero-shot baseline and benefits from further scaling, both in model and dataset size.
Accompanying these datasets and results is a suite of comprehensive benchmark results comparing classical and deep learning baselines to our pre-trained method.
arXiv Detail & Related papers (2023-10-08T08:09:51Z) - Time Series Forecasting via Semi-Asymmetric Convolutional Architecture
with Global Atrous Sliding Window [0.0]
The proposed method in this paper is designed to address the problem of time series forecasting.
Most of modern models only focus on a short range of information, which are fatal for problems such as time series forecasting.
We make three main contributions that are experimentally verified to have performance advantages.
arXiv Detail & Related papers (2023-01-31T15:07:31Z) - Ti-MAE: Self-Supervised Masked Time Series Autoencoders [16.98069693152999]
We propose a novel framework named Ti-MAE, in which the input time series are assumed to follow an integrate distribution.
Ti-MAE randomly masks out embedded time series data and learns an autoencoder to reconstruct them at the point-level.
Experiments on several public real-world datasets demonstrate that our framework of masked autoencoding could learn strong representations directly from the raw data.
arXiv Detail & Related papers (2023-01-21T03:20:23Z) - Predicting Temporal Sets with Deep Neural Networks [50.53727580527024]
We propose an integrated solution based on the deep neural networks for temporal sets prediction.
A unique perspective is to learn element relationship by constructing set-level co-occurrence graph.
We design an attention-based module to adaptively learn the temporal dependency of elements and sets.
arXiv Detail & Related papers (2020-06-20T03:29:02Z) - A machine learning approach for forecasting hierarchical time series [4.157415305926584]
We propose a machine learning approach for forecasting hierarchical time series.
Forecast reconciliation is the process of adjusting forecasts to make them coherent across the hierarchy.
We exploit the ability of a deep neural network to extract information capturing the structure of the hierarchy.
arXiv Detail & Related papers (2020-05-31T22:26:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.