What You Have is What You Track: Adaptive and Robust Multimodal Tracking
- URL: http://arxiv.org/abs/2507.05899v1
- Date: Tue, 08 Jul 2025 11:40:21 GMT
- Title: What You Have is What You Track: Adaptive and Robust Multimodal Tracking
- Authors: Yuedong Tan, Jiawei Shao, Eduard Zamfir, Ruanjun Li, Zhaochong An, Chao Ma, Danda Paudel, Luc Van Gool, Radu Timofte, Zongwei Wu,
- Abstract summary: We present the first comprehensive study on tracker performance with temporally incomplete multimodal data.<n>Our model achieves SOTA performance across 9 benchmarks, excelling in both conventional complete and missing modality settings.
- Score: 72.92244578461869
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multimodal data is known to be helpful for visual tracking by improving robustness to appearance variations. However, sensor synchronization challenges often compromise data availability, particularly in video settings where shortages can be temporal. Despite its importance, this area remains underexplored. In this paper, we present the first comprehensive study on tracker performance with temporally incomplete multimodal data. Unsurprisingly, under such a circumstance, existing trackers exhibit significant performance degradation, as their rigid architectures lack the adaptability needed to effectively handle missing modalities. To address these limitations, we propose a flexible framework for robust multimodal tracking. We venture that a tracker should dynamically activate computational units based on missing data rates. This is achieved through a novel Heterogeneous Mixture-of-Experts fusion mechanism with adaptive complexity, coupled with a video-level masking strategy that ensures both temporal consistency and spatial completeness which is critical for effective video tracking. Surprisingly, our model not only adapts to varying missing rates but also adjusts to scene complexity. Extensive experiments show that our model achieves SOTA performance across 9 benchmarks, excelling in both conventional complete and missing modality settings. The code and benchmark will be publicly available at https://github.com/supertyd/FlexTrack/tree/main.
Related papers
- Temporal Correlation Meets Embedding: Towards a 2nd Generation of JDE-based Real-Time Multi-Object Tracking [52.04679257903805]
Joint Detection and Embedding (JDE) trackers have demonstrated excellent performance in Multi-Object Tracking (MOT) tasks.
Our tracker, named TCBTrack, achieves state-of-the-art performance on multiple public benchmarks.
arXiv Detail & Related papers (2024-07-19T07:48:45Z) - Exploring Dynamic Transformer for Efficient Object Tracking [58.120191254379854]
We propose DyTrack, a dynamic transformer framework for efficient tracking.<n>DyTrack automatically learns to configure proper reasoning routes for various inputs, gaining better utilization of the available computational budget.<n>Experiments on multiple benchmarks demonstrate that DyTrack achieves promising speed-precision trade-offs with only a single model.
arXiv Detail & Related papers (2024-03-26T12:31:58Z) - Bi-directional Adapter for Multi-modal Tracking [67.01179868400229]
We propose a novel multi-modal visual prompt tracking model based on a universal bi-directional adapter.
We develop a simple but effective light feature adapter to transfer modality-specific information from one modality to another.
Our model achieves superior tracking performance in comparison with both the full fine-tuning methods and the prompt learning-based methods.
arXiv Detail & Related papers (2023-12-17T05:27:31Z) - Single-Model and Any-Modality for Video Object Tracking [85.83753760853142]
We introduce Un-Track, a Unified Tracker of a single set of parameters for any modality.
To handle any modality, our method learns their common latent space through low-rank factorization and reconstruction techniques.
Our Un-Track achieves +8.1 absolute F-score gain, on the DepthTrack dataset, by introducing only +2.14 (over 21.50) GFLOPs with +6.6M (over 93M) parameters.
arXiv Detail & Related papers (2023-11-27T14:17:41Z) - Hybrid-SORT: Weak Cues Matter for Online Multi-Object Tracking [51.16677396148247]
Multi-Object Tracking (MOT) aims to detect and associate all desired objects across frames.
In this paper, we demonstrate this long-standing challenge in MOT can be efficiently and effectively resolved by incorporating weak cues.
Our method Hybrid-SORT achieves superior performance on diverse benchmarks, including MOT17, MOT20, and especially DanceTrack.
arXiv Detail & Related papers (2023-08-01T18:53:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.