Simple Convergence Proof of Adam From a Sign-like Descent Perspective
- URL: http://arxiv.org/abs/2507.05966v1
- Date: Tue, 08 Jul 2025 13:19:26 GMT
- Title: Simple Convergence Proof of Adam From a Sign-like Descent Perspective
- Authors: Hanyang Peng, Shuang Qin, Yue Yu, Fangqing Jiang, Hui Wang, Zhouchen Lin,
- Abstract summary: We show that Adam achieves the optimal rate of $cal O(frac1Ts14)$ rather than the previous $cal O(fracln TTs14)$.<n>Our theoretical analysis provides new insights into the role of momentum as a key factor ensuring convergence.
- Score: 58.89890024903816
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Adam is widely recognized as one of the most effective optimizers for training deep neural networks (DNNs). Despite its remarkable empirical success, its theoretical convergence analysis remains unsatisfactory. Existing works predominantly interpret Adam as a preconditioned stochastic gradient descent with momentum (SGDM), formulated as $\bm{x}_{t+1} = \bm{x}_t - \frac{\gamma_t}{{\sqrt{\bm{v}_t}+\epsilon}} \circ \bm{m}_t$. This perspective necessitates strong assumptions and intricate techniques, resulting in lengthy and opaque convergence proofs that are difficult to verify and extend. In contrast, we propose a novel interpretation by treating Adam as a sign-like optimizer, expressed as $\bm{x}_{t+1} = \bm{x}_t - \gamma_t \frac{|\bm{m}_t|}{{\sqrt{\bm{v}_t}+\epsilon}} \circ {\rm Sign}(\bm{m}_t)$. This reformulation significantly simplifies the convergence analysis. For the first time, with some mild conditions, we prove that Adam achieves the optimal rate of ${\cal O}(\frac{1}{T^{\sfrac{1}{4}}})$ rather than the previous ${\cal O} \left(\frac{\ln T}{T^{\sfrac{1}{4}}}\right)$ under weak assumptions of the generalized $p$-affine variance and $(L_0, L_1, q)$-smoothness, without dependence on the model dimensionality or the numerical stability parameter $\epsilon$. Additionally, our theoretical analysis provides new insights into the role of momentum as a key factor ensuring convergence and offers practical guidelines for tuning learning rates in Adam, further bridging the gap between theory and practice.
Related papers
- On the $O(\frac{\sqrt{d}}{K^{1/4}})$ Convergence Rate of AdamW Measured by $\ell_1$ Norm [54.28350823319057]
This paper establishes the convergence rate $frac1Ksum_k=1KEleft[|nabla f(xk)|_1right]leq O(fracsqrtdCK1/4) for AdamW measured by $ell_$ norm, where $K$ represents the iteration number, $d denotes the model dimension, and $C$ matches the constant in the optimal convergence rate of SGD.
arXiv Detail & Related papers (2025-05-17T05:02:52Z) - Sign Operator for Coping with Heavy-Tailed Noise in Non-Convex Optimization: High Probability Bounds Under $(L_0, L_1)$-Smoothness [74.18546828528298]
We show that SignSGD with Majority Voting can robustly work on the whole range of complexity with $kappakappakappakappa-1right, kappakappakappa-1right, kappakappakappa-1right, kappakappakappa-1right, kappakappakappa-1right, kappakappakappa-1right, kappakappakappa-1right, kappa
arXiv Detail & Related papers (2025-02-11T19:54:11Z) - Adam Exploits $\ell_\infty$-geometry of Loss Landscape via Coordinate-wise Adaptivity [6.270305440413688]
We find that Adam performs worse when the favorable $ell_infty$-geometry is SGD while provably remains unaffected.<n>Our experiments confirm that Adam performs much worse when the favorable $ell_infty$-geometry is SGD while provably remains unaffected.
arXiv Detail & Related papers (2024-10-10T17:58:53Z) - Convergence Guarantees for RMSProp and Adam in Generalized-smooth Non-convex Optimization with Affine Noise Variance [23.112775335244258]
We first analyze RMSProp, which is a special case of Adam with adaptive learning rates but without first-order momentum.<n>We develop a new upper bound first-order term in the descent lemma, which is also a function of the gradient norm.<n>Our results for both RMSProp and Adam match with the complexity established in citearvani2023lower.
arXiv Detail & Related papers (2024-04-01T19:17:45Z) - Convergence of Adam Under Relaxed Assumptions [72.24779199744954]
We show that Adam converges to $epsilon$-stationary points with $O(epsilon-4)$ gradient complexity under far more realistic conditions.
We also propose a variance-reduced version of Adam with an accelerated gradient complexity of $O(epsilon-3)$.
arXiv Detail & Related papers (2023-04-27T06:27:37Z) - Provable Adaptivity of Adam under Non-uniform Smoothness [79.25087082434975]
Adam is widely adopted in practical applications due to its fast convergence.
Existing convergence analyses for Adam rely on the bounded smoothness assumption.
This paper studies the convergence of randomly reshuffled Adam with diminishing learning rate.
arXiv Detail & Related papers (2022-08-21T14:57:47Z) - A new regret analysis for Adam-type algorithms [78.825194932103]
In theory, regret guarantees for online convex optimization require a rapidly decaying $beta_1to0$ schedule.
We propose a novel framework that allows us to derive optimal, data-dependent regret bounds with a constant $beta_1$.
arXiv Detail & Related papers (2020-03-21T19:19:51Z) - A Simple Convergence Proof of Adam and Adagrad [74.24716715922759]
We show a proof of convergence between the Adam Adagrad and $O(d(N)/st)$ algorithms.
Adam converges with the same convergence $O(d(N)/st)$ when used with the default parameters.
arXiv Detail & Related papers (2020-03-05T01:56:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.