Exploring Partial Multi-Label Learning via Integrating Semantic Co-occurrence Knowledge
- URL: http://arxiv.org/abs/2507.05992v1
- Date: Tue, 08 Jul 2025 13:53:28 GMT
- Title: Exploring Partial Multi-Label Learning via Integrating Semantic Co-occurrence Knowledge
- Authors: Xin Wu, Fei Teng, Yue Feng, Kaibo Shi, Zhuosheng Lin, Ji Zhang, James Wang,
- Abstract summary: Partial multi-label learning aims to extract knowledge from incompletely annotated data.<n>Core challenge lies in accurately identifying the ambiguous relationships between labels and instances.<n>We propose Semantic Co-occurrence Insight Network (SCINet), a novel and effective framework for partial multi-label learning.
- Score: 30.05176623784069
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Partial multi-label learning aims to extract knowledge from incompletely annotated data, which includes known correct labels, known incorrect labels, and unknown labels. The core challenge lies in accurately identifying the ambiguous relationships between labels and instances. In this paper, we emphasize that matching co-occurrence patterns between labels and instances is key to addressing this challenge. To this end, we propose Semantic Co-occurrence Insight Network (SCINet), a novel and effective framework for partial multi-label learning. Specifically, SCINet introduces a bi-dominant prompter module, which leverages an off-the-shelf multimodal model to capture text-image correlations and enhance semantic alignment. To reinforce instance-label interdependencies, we develop a cross-modality fusion module that jointly models inter-label correlations, inter-instance relationships, and co-occurrence patterns across instance-label assignments. Moreover, we propose an intrinsic semantic augmentation strategy that enhances the model's understanding of intrinsic data semantics by applying diverse image transformations, thereby fostering a synergistic relationship between label confidence and sample difficulty. Extensive experiments on four widely-used benchmark datasets demonstrate that SCINet surpasses state-of-the-art methods.
Related papers
- Semantic-Aligned Learning with Collaborative Refinement for Unsupervised VI-ReID [82.12123628480371]
Unsupervised person re-identification (USL-VI-ReID) seeks to match pedestrian images of the same individual across different modalities without human annotations for model learning.<n>Previous methods unify pseudo-labels of cross-modality images through label association algorithms and then design contrastive learning framework for global feature learning.<n>We propose a Semantic-Aligned Learning with Collaborative Refinement (SALCR) framework, which builds up objective for specific fine-grained patterns emphasized by each modality.
arXiv Detail & Related papers (2025-04-27T13:58:12Z) - Multi-Label Contrastive Learning : A Comprehensive Study [48.81069245141415]
Multi-label classification has emerged as a key area in both research and industry.<n>Applying contrastive learning to multi-label classification presents unique challenges.<n>We conduct an in-depth study of contrastive learning loss for multi-label classification across diverse settings.
arXiv Detail & Related papers (2024-11-27T20:20:06Z) - Multi-Label Bayesian Active Learning with Inter-Label Relationships [3.88369051454137]
We propose a new multi-label active learning strategy to address both challenges.<n>Our method incorporates progressively updated positive and negative correlation matrices to capture co-occurrence and disjoint relationships.<n>Our strategy consistently achieves more reliable and superior performance, compared to several established methods.
arXiv Detail & Related papers (2024-11-26T23:28:54Z) - CARAT: Contrastive Feature Reconstruction and Aggregation for
Multi-Modal Multi-Label Emotion Recognition [18.75994345925282]
Multi-modal multi-label emotion recognition (MMER) aims to identify relevant emotions from multiple modalities.
The challenge of MMER is how to effectively capture discriminative features for multiple labels from heterogeneous data.
This paper presents ContrAstive feature Reconstruction and AggregaTion (CARAT) for the MMER task.
arXiv Detail & Related papers (2023-12-15T20:58:05Z) - mCL-NER: Cross-Lingual Named Entity Recognition via Multi-view
Contrastive Learning [54.523172171533645]
Cross-lingual named entity recognition (CrossNER) faces challenges stemming from uneven performance due to the scarcity of multilingual corpora.
We propose Multi-view Contrastive Learning for Cross-lingual Named Entity Recognition (mCL-NER)
Our experiments on the XTREME benchmark, spanning 40 languages, demonstrate the superiority of mCL-NER over prior data-driven and model-based approaches.
arXiv Detail & Related papers (2023-08-17T16:02:29Z) - Semi-Supervised Learning of Semantic Correspondence with Pseudo-Labels [26.542718087103665]
SemiMatch is a semi-supervised solution for establishing dense correspondences across semantically similar images.
Our framework generates the pseudo-labels using the model's prediction itself between source and weakly-augmented target, and uses pseudo-labels to learn the model again between source and strongly-augmented target.
In experiments, SemiMatch achieves state-of-the-art performance on various benchmarks, especially on PF-Willow by a large margin.
arXiv Detail & Related papers (2022-03-30T03:52:50Z) - Structured Semantic Transfer for Multi-Label Recognition with Partial
Labels [85.6967666661044]
We propose a structured semantic transfer (SST) framework that enables training multi-label recognition models with partial labels.
The framework consists of two complementary transfer modules that explore within-image and cross-image semantic correlations.
Experiments on the Microsoft COCO, Visual Genome and Pascal VOC datasets show that the proposed SST framework obtains superior performance over current state-of-the-art algorithms.
arXiv Detail & Related papers (2021-12-21T02:15:01Z) - GuidedMix-Net: Learning to Improve Pseudo Masks Using Labeled Images as
Reference [153.354332374204]
We propose a novel method for semi-supervised semantic segmentation named GuidedMix-Net.
We first introduce a feature alignment objective between labeled and unlabeled data to capture potentially similar image pairs.
MITrans is shown to be a powerful knowledge module for further progressive refining features of unlabeled data.
Along with supervised learning for labeled data, the prediction of unlabeled data is jointly learned with the generated pseudo masks.
arXiv Detail & Related papers (2021-06-29T02:48:45Z) - Knowledge-Guided Multi-Label Few-Shot Learning for General Image
Recognition [75.44233392355711]
KGGR framework exploits prior knowledge of statistical label correlations with deep neural networks.
It first builds a structured knowledge graph to correlate different labels based on statistical label co-occurrence.
Then, it introduces the label semantics to guide learning semantic-specific features.
It exploits a graph propagation network to explore graph node interactions.
arXiv Detail & Related papers (2020-09-20T15:05:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.