A Differential Evolution Algorithm with Neighbor-hood Mutation for DOA Estimation
- URL: http://arxiv.org/abs/2507.06020v2
- Date: Sat, 26 Jul 2025 11:56:02 GMT
- Title: A Differential Evolution Algorithm with Neighbor-hood Mutation for DOA Estimation
- Authors: Bo Zhou, Kaijie Xu, Yinghui Quan, Mengdao Xing,
- Abstract summary: Two-dimensional (2D) Multiple Signal Classification algorithm is a powerful technique for high-resolution direction-of-arrival (DOA) estimation in array signal processing.<n>We reformulate the peak-finding process as a multimodal optimization prob-lem, and propose a Differential Evolu-tion algorithm with Neighborhood Mutation (DE-NM) to efficiently lo-cate multiple spectral peaks.
- Score: 11.842677286643609
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Two-dimensional (2D) Multiple Signal Classification algorithm is a powerful technique for high-resolution direction-of-arrival (DOA) estimation in array signal processing. However, the exhaustive search over the 2D an-gular domain leads to high computa-tional cost, limiting its applicability in real-time scenarios. In this work, we reformulate the peak-finding process as a multimodal optimization prob-lem, and propose a Differential Evolu-tion algorithm with Neighborhood Mutation (DE-NM) to efficiently lo-cate multiple spectral peaks without requiring dense grid sampling. Simu-lation results demonstrate that the proposed method achieves comparable estimation accuracy to the traditional grid search, while significantly reduc-ing computation time. This strategy presents a promising solution for real-time, high-resolution DOA estimation in practical applications. The imple-mentation code is available at https://github.com/zzb-nice/DOA_multimodel_optimize.
Related papers
- A Gradient Meta-Learning Joint Optimization for Beamforming and Antenna Position in Pinching-Antenna Systems [63.213207442368294]
We consider a novel optimization design for multi-waveguide pinching-antenna systems.<n>The proposed GML-JO algorithm is robust to different choices and better performance compared with the existing optimization methods.
arXiv Detail & Related papers (2025-06-14T17:35:27Z) - Performance Evaluation of Evolutionary Algorithms for Analog Integrated
Circuit Design Optimisation [0.0]
An automated sizing approach for analog circuits is presented in this paper.
A targeted search of the search space has been implemented using a particle generation function and a repair-bounds function.
The algorithms are tuned and modified to converge to a better optimal solution.
arXiv Detail & Related papers (2023-10-19T03:26:36Z) - An Efficient Algorithm for Clustered Multi-Task Compressive Sensing [60.70532293880842]
Clustered multi-task compressive sensing is a hierarchical model that solves multiple compressive sensing tasks.
The existing inference algorithm for this model is computationally expensive and does not scale well in high dimensions.
We propose a new algorithm that substantially accelerates model inference by avoiding the need to explicitly compute these covariance matrices.
arXiv Detail & Related papers (2023-09-30T15:57:14Z) - Ordering for Non-Replacement SGD [7.11967773739707]
We seek to find an ordering that can improve the convergence rates for the non-replacement form of the algorithm.
We develop optimal orderings for constant and decreasing step sizes for strongly convex and convex functions.
In addition, we are able to combine the ordering with mini-batch and further apply it to more complex neural networks.
arXiv Detail & Related papers (2023-06-28T00:46:58Z) - Fast Computation of Optimal Transport via Entropy-Regularized Extragradient Methods [75.34939761152587]
Efficient computation of the optimal transport distance between two distributions serves as an algorithm that empowers various applications.
This paper develops a scalable first-order optimization-based method that computes optimal transport to within $varepsilon$ additive accuracy.
arXiv Detail & Related papers (2023-01-30T15:46:39Z) - Dual Optimization for Kolmogorov Model Learning Using Enhanced Gradient
Descent [8.714458129632158]
Kolmogorov model (KM) is an interpretable and predictable representation approach to learning the underlying probabilistic structure of a set of random variables.
We propose a computationally scalable KM learning algorithm, based on the regularized dual optimization combined with enhanced gradient descent (GD) method.
It is shown that the accuracy of logical relation mining for interpretability by using the proposed KM learning algorithm exceeds $80%$.
arXiv Detail & Related papers (2021-07-11T10:33:02Z) - Lower Bounds and Optimal Algorithms for Smooth and Strongly Convex
Decentralized Optimization Over Time-Varying Networks [79.16773494166644]
We consider the task of minimizing the sum of smooth and strongly convex functions stored in a decentralized manner across the nodes of a communication network.
We design two optimal algorithms that attain these lower bounds.
We corroborate the theoretical efficiency of these algorithms by performing an experimental comparison with existing state-of-the-art methods.
arXiv Detail & Related papers (2021-06-08T15:54:44Z) - Learning Sampling Policy for Faster Derivative Free Optimization [100.27518340593284]
We propose a new reinforcement learning based ZO algorithm (ZO-RL) with learning the sampling policy for generating the perturbations in ZO optimization instead of using random sampling.
Our results show that our ZO-RL algorithm can effectively reduce the variances of ZO gradient by learning a sampling policy, and converge faster than existing ZO algorithms in different scenarios.
arXiv Detail & Related papers (2021-04-09T14:50:59Z) - Finding optimal Pulse Repetion Intervals with Many-objective
Evolutionary Algorithms [0.0]
We consider the problem of finding Pulse Repetition Intervals allowing the best compromises mitigating range and Doppler ambiguities in a Pulsed-Doppler radar system.
We use it as a baseline to compare several Evolutionary Algorithms for black-box optimization with different metrics.
arXiv Detail & Related papers (2020-11-13T13:56:13Z) - Single-Timescale Stochastic Nonconvex-Concave Optimization for Smooth
Nonlinear TD Learning [145.54544979467872]
We propose two single-timescale single-loop algorithms that require only one data point each step.
Our results are expressed in a form of simultaneous primal and dual side convergence.
arXiv Detail & Related papers (2020-08-23T20:36:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.