Reflections Unlock: Geometry-Aware Reflection Disentanglement in 3D Gaussian Splatting for Photorealistic Scenes Rendering
- URL: http://arxiv.org/abs/2507.06103v1
- Date: Tue, 08 Jul 2025 15:45:08 GMT
- Title: Reflections Unlock: Geometry-Aware Reflection Disentanglement in 3D Gaussian Splatting for Photorealistic Scenes Rendering
- Authors: Jiayi Song, Zihan Ye, Qingyuan Zhou, Weidong Yang, Ben Fei, Jingyi Xu, Ying He, Wanli Ouyang,
- Abstract summary: Ref-Unlock is a novel geometry-aware reflection modeling framework based on 3D Gaussian Splatting.<n>Our approach employs a dual-branch representation with high-order spherical harmonics to capture high-frequency reflective details.<n>Our method thus offers an efficient and generalizable solution for realistic rendering of reflective scenes.
- Score: 51.223347330075576
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurately rendering scenes with reflective surfaces remains a significant challenge in novel view synthesis, as existing methods like Neural Radiance Fields (NeRF) and 3D Gaussian Splatting (3DGS) often misinterpret reflections as physical geometry, resulting in degraded reconstructions. Previous methods rely on incomplete and non-generalizable geometric constraints, leading to misalignment between the positions of Gaussian splats and the actual scene geometry. When dealing with real-world scenes containing complex geometry, the accumulation of Gaussians further exacerbates surface artifacts and results in blurred reconstructions. To address these limitations, in this work, we propose Ref-Unlock, a novel geometry-aware reflection modeling framework based on 3D Gaussian Splatting, which explicitly disentangles transmitted and reflected components to better capture complex reflections and enhance geometric consistency in real-world scenes. Our approach employs a dual-branch representation with high-order spherical harmonics to capture high-frequency reflective details, alongside a reflection removal module providing pseudo reflection-free supervision to guide clean decomposition. Additionally, we incorporate pseudo-depth maps and a geometry-aware bilateral smoothness constraint to enhance 3D geometric consistency and stability in decomposition. Extensive experiments demonstrate that Ref-Unlock significantly outperforms classical GS-based reflection methods and achieves competitive results with NeRF-based models, while enabling flexible vision foundation models (VFMs) driven reflection editing. Our method thus offers an efficient and generalizable solution for realistic rendering of reflective scenes. Our code is available at https://ref-unlock.github.io/.
Related papers
- GS-2DGS: Geometrically Supervised 2DGS for Reflective Object Reconstruction [51.99776072246151]
We propose a novel reconstruction method called GS-2DGS for reflective objects based on 2D Gaussian Splatting (2DGS)<n> Experimental results on synthetic and real datasets demonstrate that our method significantly outperforms Gaussian-based techniques in terms of reconstruction and relighting.
arXiv Detail & Related papers (2025-06-16T05:40:16Z) - RGS-DR: Reflective Gaussian Surfels with Deferred Rendering for Shiny Objects [40.7625935521925]
RGS-DR is a novel inverse rendering method for reconstructing and rendering glossy and reflective objects.<n>It supports flexible relighting and scene editing.
arXiv Detail & Related papers (2025-04-25T16:23:50Z) - GUS-IR: Gaussian Splatting with Unified Shading for Inverse Rendering [83.69136534797686]
We present GUS-IR, a novel framework designed to address the inverse rendering problem for complicated scenes featuring rough and glossy surfaces.
This paper starts by analyzing and comparing two prominent shading techniques popularly used for inverse rendering, forward shading and deferred shading.
We propose a unified shading solution that combines the advantages of both techniques for better decomposition.
arXiv Detail & Related papers (2024-11-12T01:51:05Z) - GlossyGS: Inverse Rendering of Glossy Objects with 3D Gaussian Splatting [21.23724172779984]
GlossyGS aims to precisely reconstruct the geometry and materials of glossy objects by integrating material priors.
We demonstrate through quantitative analysis and qualitative visualization that the proposed method is effective to reconstruct high-fidelity geometries and materials of glossy objects.
arXiv Detail & Related papers (2024-10-17T09:00:29Z) - NeRSP: Neural 3D Reconstruction for Reflective Objects with Sparse Polarized Images [62.752710734332894]
NeRSP is a Neural 3D reconstruction technique for Reflective surfaces with Sparse Polarized images.
We derive photometric and geometric cues from the polarimetric image formation model and multiview azimuth consistency.
We achieve the state-of-the-art surface reconstruction results with only 6 views as input.
arXiv Detail & Related papers (2024-06-11T09:53:18Z) - RefGaussian: Disentangling Reflections from 3D Gaussian Splatting for Realistic Rendering [18.427759763663047]
We propose RefGaussian to disentangle reflections from 3D-GS for realistically modeling reflections.
We employ local regularization techniques to ensure local smoothness for both the transmitted and reflected components.
Our approach achieves superior novel view synthesis and accurate depth estimation outcomes.
arXiv Detail & Related papers (2024-06-09T16:49:39Z) - UniSDF: Unifying Neural Representations for High-Fidelity 3D Reconstruction of Complex Scenes with Reflections [87.191742674543]
We propose UniSDF, a general purpose 3D reconstruction method that can reconstruct large complex scenes with reflections.<n>Our method is able to robustly reconstruct complex large-scale scenes with fine details and reflective surfaces, leading to the best overall performance.
arXiv Detail & Related papers (2023-12-20T18:59:42Z) - GS-IR: 3D Gaussian Splatting for Inverse Rendering [71.14234327414086]
We propose GS-IR, a novel inverse rendering approach based on 3D Gaussian Splatting (GS)
We extend GS, a top-performance representation for novel view synthesis, to estimate scene geometry, surface material, and environment illumination from multi-view images captured under unknown lighting conditions.
The flexible and expressive GS representation allows us to achieve fast and compact geometry reconstruction, photorealistic novel view synthesis, and effective physically-based rendering.
arXiv Detail & Related papers (2023-11-26T02:35:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.