Omni-Video: Democratizing Unified Video Understanding and Generation
- URL: http://arxiv.org/abs/2507.06119v2
- Date: Wed, 09 Jul 2025 12:27:27 GMT
- Title: Omni-Video: Democratizing Unified Video Understanding and Generation
- Authors: Zhiyu Tan, Hao Yang, Luozheng Qin, Jia Gong, Mengping Yang, Hao Li,
- Abstract summary: This report presents Omni-Video, an efficient and effective unified framework for video understanding, generation, as well as instruction-based editing.<n>Our key insight is to teach existing multimodal large language models (MLLMs) to produce continuous visual clues that are used as the input of diffusion decoders.<n>To fully unlock the potential of our system for unified video modeling, we integrate several technical improvements.
- Score: 13.616454543808798
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Notable breakthroughs in unified understanding and generation modeling have led to remarkable advancements in image understanding, reasoning, production and editing, yet current foundational models predominantly focus on processing images, creating a gap in the development of unified models for video understanding and generation. This report presents Omni-Video, an efficient and effective unified framework for video understanding, generation, as well as instruction-based editing. Our key insight is to teach existing multimodal large language models (MLLMs) to produce continuous visual clues that are used as the input of diffusion decoders, which produce high-quality videos conditioned on these visual clues. To fully unlock the potential of our system for unified video modeling, we integrate several technical improvements: 1) a lightweight architectural design that respectively attaches a vision head on the top of MLLMs and a adapter before the input of diffusion decoders, the former produce visual tokens for the latter, which adapts these visual tokens to the conditional space of diffusion decoders; and 2) an efficient multi-stage training scheme that facilitates a fast connection between MLLMs and diffusion decoders with limited data and computational resources. We empirically demonstrate that our model exhibits satisfactory generalization abilities across video generation, editing and understanding tasks.
Related papers
- ILLUME+: Illuminating Unified MLLM with Dual Visual Tokenization and Diffusion Refinement [68.05833403672274]
Existing unified models have struggled to handle the three fundamental capabilities in a unified model: understanding, generation, and editing.<n>ILLUME+ introduces a unified dual visual tokenizer, DualViTok, which preserves fine-grained textures and text-aligned semantics.<n>We also employ a diffusion model as the image detokenizer for enhanced generation quality and efficient super-resolution.
arXiv Detail & Related papers (2025-04-02T17:45:00Z) - Improving Multi-modal Large Language Model through Boosting Vision Capabilities [54.344077285545005]
We focus on improving the visual understanding capability for boosting the vision-language models.
We propose textbfArcana, a multiModal language model, which introduces two crucial techniques.
arXiv Detail & Related papers (2024-10-17T16:36:38Z) - VIMI: Grounding Video Generation through Multi-modal Instruction [89.90065445082442]
Existing text-to-video diffusion models rely solely on text-only encoders for their pretraining.
We construct a large-scale multimodal prompt dataset by employing retrieval methods to pair in-context examples with the given text prompts.
We finetune the model from the first stage on three video generation tasks, incorporating multi-modal instructions.
arXiv Detail & Related papers (2024-07-08T18:12:49Z) - Fewer Tokens and Fewer Videos: Extending Video Understanding Abilities in Large Vision-Language Models [29.825619120260164]
This paper addresses the challenge by leveraging the visual commonalities between images and videos to evolve image-LVLMs into video-LVLMs.
We present a cost-effective video-LVLM that enhances model architecture, introduces innovative training strategies, and identifies the most effective types of video instruction data.
arXiv Detail & Related papers (2024-06-12T09:22:45Z) - Tuning Large Multimodal Models for Videos using Reinforcement Learning from AI Feedback [38.708690624594794]
Video and text multimodal alignment remains challenging, primarily due to the deficient volume and quality of multimodal instruction-tune data.
We present a novel alignment strategy that employs multimodal AI system to oversee itself called Reinforcement Learning from AI Feedback (RLAIF)
In specific, we propose context-aware reward modeling by providing detailed video descriptions as context during the generation of preference feedback.
arXiv Detail & Related papers (2024-02-06T06:27:40Z) - Video-LaVIT: Unified Video-Language Pre-training with Decoupled Visual-Motional Tokenization [52.63845811751936]
Video pre-training is challenging due to the modeling of its dynamics video.
In this paper, we address such limitations in video pre-training with an efficient video decomposition.
Our framework is both capable of comprehending and generating image and video content, as demonstrated by its performance across 13 multimodal benchmarks.
arXiv Detail & Related papers (2024-02-05T16:30:49Z) - VidCoM: Fast Video Comprehension through Large Language Models with Multimodal Tools [44.78291853329394]
textbfVidCoM is a fast adaptive framework that leverages Large Language Models (LLMs) to reason about videos using lightweight visual tools.
An InsOVER algorithm locates the corresponding video events based on an efficient Hungarian matching between decompositions of linguistic instructions and video events.
arXiv Detail & Related papers (2023-10-16T17:05:56Z) - Video-Teller: Enhancing Cross-Modal Generation with Fusion and
Decoupling [79.49128866877922]
Video-Teller is a video-language foundation model that leverages multi-modal fusion and fine-grained modality alignment.
Video-Teller boosts the training efficiency by utilizing frozen pretrained vision and language modules.
It capitalizes on the robust linguistic capabilities of large language models, enabling the generation of both concise and elaborate video descriptions.
arXiv Detail & Related papers (2023-10-08T03:35:27Z) - MaMMUT: A Simple Architecture for Joint Learning for MultiModal Tasks [59.09343552273045]
We propose a decoder-only model for multimodal tasks, which is surprisingly effective in jointly learning of these disparate vision-language tasks.
We demonstrate that joint learning of these diverse objectives is simple, effective, and maximizes the weight-sharing of the model across these tasks.
Our model achieves the state of the art on image-text and text-image retrieval, video question answering and open-vocabulary detection tasks, outperforming much larger and more extensively trained foundational models.
arXiv Detail & Related papers (2023-03-29T16:42:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.