OpenAgentSafety: A Comprehensive Framework for Evaluating Real-World AI Agent Safety
- URL: http://arxiv.org/abs/2507.06134v1
- Date: Tue, 08 Jul 2025 16:18:54 GMT
- Title: OpenAgentSafety: A Comprehensive Framework for Evaluating Real-World AI Agent Safety
- Authors: Sanidhya Vijayvargiya, Aditya Bharat Soni, Xuhui Zhou, Zora Zhiruo Wang, Nouha Dziri, Graham Neubig, Maarten Sap,
- Abstract summary: We introduce OpenAgentSafety, a comprehensive framework for evaluating agent behavior across eight critical risk categories.<n>Unlike prior work, our framework evaluates agents that interact with real tools, including web browsers, code execution environments, file systems, bash shells, and messaging platforms.<n>It combines rule-based analysis with LLM-as-judge assessments to detect both overt and subtle unsafe behaviors.
- Score: 58.201189860217724
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent advances in AI agents capable of solving complex, everyday tasks, from scheduling to customer service, have enabled deployment in real-world settings, but their possibilities for unsafe behavior demands rigorous evaluation. While prior benchmarks have attempted to assess agent safety, most fall short by relying on simulated environments, narrow task domains, or unrealistic tool abstractions. We introduce OpenAgentSafety, a comprehensive and modular framework for evaluating agent behavior across eight critical risk categories. Unlike prior work, our framework evaluates agents that interact with real tools, including web browsers, code execution environments, file systems, bash shells, and messaging platforms; and supports over 350 multi-turn, multi-user tasks spanning both benign and adversarial user intents. OpenAgentSafety is designed for extensibility, allowing researchers to add tools, tasks, websites, and adversarial strategies with minimal effort. It combines rule-based analysis with LLM-as-judge assessments to detect both overt and subtle unsafe behaviors. Empirical analysis of five prominent LLMs in agentic scenarios reveals unsafe behavior in 51.2% of safety-vulnerable tasks with Claude-Sonnet-3.7, to 72.7% with o3-mini, highlighting critical safety vulnerabilities and the need for stronger safeguards before real-world deployment.
Related papers
- Kaleidoscopic Teaming in Multi Agent Simulations [75.47388708240042]
We argue that existing red teaming or safety evaluation frameworks fall short in evaluating safety risks in complex behaviors, thought processes and actions taken by agents.<n>We introduce new in-context optimization techniques that can be used in our kaleidoscopic teaming framework to generate better scenarios for safety analysis.<n>We present appropriate metrics that can be used along with our framework to measure safety of agents.
arXiv Detail & Related papers (2025-06-20T23:37:17Z) - IS-Bench: Evaluating Interactive Safety of VLM-Driven Embodied Agents in Daily Household Tasks [30.535665641990114]
We present IS-Bench, the first multi-modal benchmark designed for interactive safety.<n>It features 161 challenging scenarios with 388 unique safety risks instantiated in a high-fidelity simulator.<n>It facilitates a novel process-oriented evaluation that verifies whether risk mitigation actions are performed before/after specific risk-prone steps.
arXiv Detail & Related papers (2025-06-19T15:34:46Z) - LLM Agents Should Employ Security Principles [60.03651084139836]
This paper argues that the well-established design principles in information security should be employed when deploying Large Language Model (LLM) agents at scale.<n>We introduce AgentSandbox, a conceptual framework embedding these security principles to provide safeguards throughout an agent's life-cycle.
arXiv Detail & Related papers (2025-05-29T21:39:08Z) - Automating Safety Enhancement for LLM-based Agents with Synthetic Risk Scenarios [77.86600052899156]
Large Language Model (LLM)-based agents are increasingly deployed in real-world applications.<n>We propose AutoSafe, the first framework that systematically enhances agent safety through fully automated synthetic data generation.<n>We show that AutoSafe boosts safety scores by 45% on average and achieves a 28.91% improvement on real-world tasks.
arXiv Detail & Related papers (2025-05-23T10:56:06Z) - AgentVigil: Generic Black-Box Red-teaming for Indirect Prompt Injection against LLM Agents [54.29555239363013]
We propose a generic black-box fuzzing framework, AgentVigil, to automatically discover and exploit indirect prompt injection vulnerabilities.<n>We evaluate AgentVigil on two public benchmarks, AgentDojo and VWA-adv, where it achieves 71% and 70% success rates against agents based on o3-mini and GPT-4o.<n>We apply our attacks in real-world environments, successfully misleading agents to navigate to arbitrary URLs, including malicious sites.
arXiv Detail & Related papers (2025-05-09T07:40:17Z) - LlamaFirewall: An open source guardrail system for building secure AI agents [0.5603362829699733]
Large language models (LLMs) have evolved from simple chatbots into autonomous agents capable of performing complex tasks.<n>Given the higher stakes and the absence of deterministic solutions to mitigate these risks, there is a critical need for a real-time guardrail monitor.<n>We introduce LlamaFirewall, an open-source security focused guardrail framework.
arXiv Detail & Related papers (2025-05-06T14:34:21Z) - Agent-SafetyBench: Evaluating the Safety of LLM Agents [72.92604341646691]
We introduce Agent-SafetyBench, a benchmark designed to evaluate the safety of large language models (LLMs)<n>Agent-SafetyBench encompasses 349 interaction environments and 2,000 test cases, evaluating 8 categories of safety risks and covering 10 common failure modes frequently encountered in unsafe interactions.<n>Our evaluation of 16 popular LLM agents reveals a concerning result: none of the agents achieves a safety score above 60%.
arXiv Detail & Related papers (2024-12-19T02:35:15Z) - SafeAgentBench: A Benchmark for Safe Task Planning of Embodied LLM Agents [42.69984822098671]
Existing benchmarks predominantly overlook critical safety risks, focusing solely on planning performance.<n>We present SafeAgentBench-the first benchmark for safety-aware task planning of embodied LLM agents in interactive simulation environments.<n>SafeAgentBench includes: (1) an executable, diverse, and high-quality dataset of 750 tasks, rigorously curated to cover 10 potential hazards and 3 task types; (2) SafeAgentEnv, a universal embodied environment with a low-level controller, supporting multi-agent execution with 17 high-level actions for 8 state-of-the-art baselines; and (3) reliable evaluation methods from both execution and semantic perspectives.
arXiv Detail & Related papers (2024-12-17T18:55:58Z) - ST-WebAgentBench: A Benchmark for Evaluating Safety and Trustworthiness in Web Agents [3.09793323158304]
Existing benchmarks measure only whether an agent finishes a task, ignoring whether it does so safely or in a way enterprises can trust.<n>We introduce textbftextscST-WebAgentBench, a suite for evaluating web agent ST across realistic enterprise scenarios.<n>Each of its 222 tasks is paired with ST policies, concise rules that encode constraints, and is scored along six dimensions (e.g., user consent, robustness)
arXiv Detail & Related papers (2024-10-09T09:13:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.