A Survey on Latent Reasoning
- URL: http://arxiv.org/abs/2507.06203v2
- Date: Thu, 10 Jul 2025 16:43:36 GMT
- Title: A Survey on Latent Reasoning
- Authors: Rui-Jie Zhu, Tianhao Peng, Tianhao Cheng, Xingwei Qu, Jinfa Huang, Dawei Zhu, Hao Wang, Kaiwen Xue, Xuanliang Zhang, Yong Shan, Tianle Cai, Taylor Kergan, Assel Kembay, Andrew Smith, Chenghua Lin, Binh Nguyen, Yuqi Pan, Yuhong Chou, Zefan Cai, Zhenhe Wu, Yongchi Zhao, Tianyu Liu, Jian Yang, Wangchunshu Zhou, Chujie Zheng, Chongxuan Li, Yuyin Zhou, Zhoujun Li, Zhaoxiang Zhang, Jiaheng Liu, Ge Zhang, Wenhao Huang, Jason Eshraghian,
- Abstract summary: Large Language Models (LLMs) have demonstrated impressive reasoning capabilities.<n>CoT reasoning that verbalizes intermediate steps limits the model's expressive bandwidth.<n>Latent reasoning tackles this bottleneck by performing multi-step inference entirely in the model's continuous hidden state.
- Score: 100.54120559169735
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) have demonstrated impressive reasoning capabilities, especially when guided by explicit chain-of-thought (CoT) reasoning that verbalizes intermediate steps. While CoT improves both interpretability and accuracy, its dependence on natural language reasoning limits the model's expressive bandwidth. Latent reasoning tackles this bottleneck by performing multi-step inference entirely in the model's continuous hidden state, eliminating token-level supervision. To advance latent reasoning research, this survey provides a comprehensive overview of the emerging field of latent reasoning. We begin by examining the foundational role of neural network layers as the computational substrate for reasoning, highlighting how hierarchical representations support complex transformations. Next, we explore diverse latent reasoning methodologies, including activation-based recurrence, hidden state propagation, and fine-tuning strategies that compress or internalize explicit reasoning traces. Finally, we discuss advanced paradigms such as infinite-depth latent reasoning via masked diffusion models, which enable globally consistent and reversible reasoning processes. By unifying these perspectives, we aim to clarify the conceptual landscape of latent reasoning and chart future directions for research at the frontier of LLM cognition. An associated GitHub repository collecting the latest papers and repos is available at: https://github.com/multimodal-art-projection/LatentCoT-Horizon/.
Related papers
- CTRLS: Chain-of-Thought Reasoning via Latent State-Transition [57.51370433303236]
Chain-of-thought (CoT) reasoning enables large language models to break down complex problems into interpretable intermediate steps.<n>We introduce groundingS, a framework that formulates CoT reasoning as a Markov decision process (MDP) with latent state transitions.<n>We show improvements in reasoning accuracy, diversity, and exploration efficiency across benchmark reasoning tasks.
arXiv Detail & Related papers (2025-07-10T21:32:18Z) - Reason from Future: Reverse Thought Chain Enhances LLM Reasoning [18.637191592875155]
We propose a novel reasoning paradigm called Reason from Future (RFF)<n>RFF generates reasoning paths by bidirectional reasoning that combines top-down planning with bottom-up reasoning accumulation.<n>RFF outperforms conventional paradigms with higher accuracy and less searching space to solve complex tasks.
arXiv Detail & Related papers (2025-06-04T08:03:17Z) - A Closer Look at Bias and Chain-of-Thought Faithfulness of Large (Vision) Language Models [53.18562650350898]
Chain-of-thought (CoT) reasoning enhances performance of large language models.<n>We present the first comprehensive study of CoT faithfulness in large vision-language models.
arXiv Detail & Related papers (2025-05-29T18:55:05Z) - Ground-R1: Incentivizing Grounded Visual Reasoning via Reinforcement Learning [96.01617809845396]
Ground-R1 is a reinforcement learning framework that enables grounded visual reasoning without requiring explicit evidence or rationale annotations.<n>Ground-R1 achieves superior performance and exhibits emergent cognitive behaviors such as uncertainty awareness, spatial perception, and iterative refinement.
arXiv Detail & Related papers (2025-05-26T17:51:47Z) - Reasoning Beyond Language: A Comprehensive Survey on Latent Chain-of-Thought Reasoning [21.444049407715955]
Large Language Models (LLMs) have achieved impressive performance on complex reasoning tasks with Chain-of-Thought (CoT) prompting.<n>There has been growing research interest in latent CoT reasoning, where inference occurs within latent spaces.<n>This paper presents a comprehensive overview and analysis of this reasoning paradigm.
arXiv Detail & Related papers (2025-05-22T15:26:51Z) - The Curse of CoT: On the Limitations of Chain-of-Thought in In-Context Learning [39.613595533503144]
Chain-of-Thought (CoT) prompting has been widely recognized for its ability to enhance reasoning capabilities in large language models.<n>We show that CoT consistently underperforms direct answering across varying model scales and benchmark complexities.<n>Our analysis uncovers a fundamental explicit-implicit duality driving CoT's performance in pattern-based ICL.
arXiv Detail & Related papers (2025-04-07T13:51:06Z) - Cantor: Inspiring Multimodal Chain-of-Thought of MLLM [83.6663322930814]
We argue that converging visual context acquisition and logical reasoning is pivotal for tackling visual reasoning tasks.
We propose an innovative multimodal CoT framework, termed Cantor, characterized by a perception-decision architecture.
Our experiments demonstrate the efficacy of the proposed framework, showing significant improvements in multimodal CoT performance.
arXiv Detail & Related papers (2024-04-24T17:59:48Z) - Visual Chain of Thought: Bridging Logical Gaps with Multimodal
Infillings [61.04460792203266]
We introduce VCoT, a novel method that leverages chain-of-thought prompting with vision-language grounding to bridge the logical gaps within sequential data.
Our method uses visual guidance to generate synthetic multimodal infillings that add consistent and novel information to reduce the logical gaps for downstream tasks.
arXiv Detail & Related papers (2023-05-03T17:58:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.