RSRefSeg 2: Decoupling Referring Remote Sensing Image Segmentation with Foundation Models
- URL: http://arxiv.org/abs/2507.06231v1
- Date: Tue, 08 Jul 2025 17:59:58 GMT
- Title: RSRefSeg 2: Decoupling Referring Remote Sensing Image Segmentation with Foundation Models
- Authors: Keyan Chen, Chenyang Liu, Bowen Chen, Jiafan Zhang, Zhengxia Zou, Zhenwei Shi,
- Abstract summary: Referring Remote Sensing Image provides a flexible and fine-grained framework for remote sensing scene analysis.<n>Current approaches utilize a three-stage pipeline encompassing dual-modal encoding, cross-modal interaction, and pixel decoding.<n>We propose RSRefSeg 2, a decoupling paradigm that reformulates the conventional workflow into a collaborative dual-stage framework.
- Score: 25.265113510539546
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Referring Remote Sensing Image Segmentation provides a flexible and fine-grained framework for remote sensing scene analysis via vision-language collaborative interpretation. Current approaches predominantly utilize a three-stage pipeline encompassing dual-modal encoding, cross-modal interaction, and pixel decoding. These methods demonstrate significant limitations in managing complex semantic relationships and achieving precise cross-modal alignment, largely due to their coupled processing mechanism that conflates target localization with boundary delineation. This architectural coupling amplifies error propagation under semantic ambiguity while restricting model generalizability and interpretability. To address these issues, we propose RSRefSeg 2, a decoupling paradigm that reformulates the conventional workflow into a collaborative dual-stage framework: coarse localization followed by fine segmentation. RSRefSeg 2 integrates CLIP's cross-modal alignment strength with SAM's segmentation generalizability through strategic foundation model collaboration. Specifically, CLIP is employed as the dual-modal encoder to activate target features within its pre-aligned semantic space and generate localization prompts. To mitigate CLIP's misactivation challenges in multi-entity scenarios described by referring texts, a cascaded second-order prompter is devised, which enhances precision through implicit reasoning via decomposition of text embeddings into complementary semantic subspaces. These optimized semantic prompts subsequently direct the SAM to generate pixel-level refined masks, thereby completing the semantic transmission pipeline. Extensive experiments (RefSegRS, RRSIS-D, and RISBench) demonstrate that RSRefSeg 2 surpasses contemporary methods in segmentation accuracy (+~3% gIoU) and complex semantic interpretation. Code is available at: https://github.com/KyanChen/RSRefSeg2.
Related papers
- LIRA: Inferring Segmentation in Large Multi-modal Models with Local Interleaved Region Assistance [56.474856189865946]
Large multi-modal models (LMMs) struggle with inaccurate segmentation and hallucinated comprehension.<n>We propose LIRA, a framework that capitalizes on the complementary relationship between visual comprehension and segmentation.<n>LIRA achieves state-of-the-art performance in both segmentation and comprehension tasks.
arXiv Detail & Related papers (2025-07-08T07:46:26Z) - Semantic Localization Guiding Segment Anything Model For Reference Remote Sensing Image Segmentation [12.67400143793047]
We propose a framework named textitprompt-generated semantic localization guiding Segment Anything Model(PSLG-SAM)<n>PSLG-SAM decomposes the Reference Remote Sensing Image (RRSIS) task into two stages: coarse localization and fine segmentation.<n> Notably, the second stage can be train-free, significantly reducing the annotation data burden for the RRSIS task.
arXiv Detail & Related papers (2025-06-12T09:04:07Z) - SketchYourSeg: Mask-Free Subjective Image Segmentation via Freehand Sketches [116.1810651297801]
SketchYourSeg establishes freehand sketches as a powerful query modality for subjective image segmentation.<n>Our evaluations demonstrate superior performance over existing approaches across diverse benchmarks.
arXiv Detail & Related papers (2025-01-27T13:07:51Z) - Multi-task Visual Grounding with Coarse-to-Fine Consistency Constraints [15.541287957548771]
We propose a Coarse-to-fine Consistency Constraints Visual Grounding architecture.<n>It integrates implicit and explicit modeling approaches within a two-stage framework.<n>It significantly outperforms state-of-the-art REC and RIS methods by a substantial margin.
arXiv Detail & Related papers (2025-01-12T04:30:13Z) - SemStereo: Semantic-Constrained Stereo Matching Network for Remote Sensing [12.710367390667292]
We propose a new network that imposes semantic constraints on the stereo matching task, both implicitly and explicitly.<n>Experiments on the US3D and WHU datasets demonstrate that our method achieves state-of-the-art performance for both semantic segmentation and stereo matching.
arXiv Detail & Related papers (2024-12-17T09:02:55Z) - Cross-Modal Bidirectional Interaction Model for Referring Remote Sensing Image Segmentation [50.433911327489554]
The goal of referring remote sensing image segmentation (RRSIS) is to generate a pixel-level mask of the target object identified by the referring expression.<n>To address the aforementioned challenges, a novel RRSIS framework is proposed, termed the cross-modal bidirectional interaction model (CroBIM)<n>To further forster the research of RRSIS, we also construct RISBench, a new large-scale benchmark dataset comprising 52,472 image-language-label triplets.
arXiv Detail & Related papers (2024-10-11T08:28:04Z) - Spatial Semantic Recurrent Mining for Referring Image Segmentation [63.34997546393106]
We propose Stextsuperscript2RM to achieve high-quality cross-modality fusion.
It follows a working strategy of trilogy: distributing language feature, spatial semantic recurrent coparsing, and parsed-semantic balancing.
Our proposed method performs favorably against other state-of-the-art algorithms.
arXiv Detail & Related papers (2024-05-15T00:17:48Z) - Object Segmentation by Mining Cross-Modal Semantics [68.88086621181628]
We propose a novel approach by mining the Cross-Modal Semantics to guide the fusion and decoding of multimodal features.
Specifically, we propose a novel network, termed XMSNet, consisting of (1) all-round attentive fusion (AF), (2) coarse-to-fine decoder (CFD), and (3) cross-layer self-supervision.
arXiv Detail & Related papers (2023-05-17T14:30:11Z) - Guiding the PLMs with Semantic Anchors as Intermediate Supervision:
Towards Interpretable Semantic Parsing [57.11806632758607]
We propose to incorporate the current pretrained language models with a hierarchical decoder network.
By taking the first-principle structures as the semantic anchors, we propose two novel intermediate supervision tasks.
We conduct intensive experiments on several semantic parsing benchmarks and demonstrate that our approach can consistently outperform the baselines.
arXiv Detail & Related papers (2022-10-04T07:27:29Z) - HSVA: Hierarchical Semantic-Visual Adaptation for Zero-Shot Learning [74.76431541169342]
Zero-shot learning (ZSL) tackles the unseen class recognition problem, transferring semantic knowledge from seen classes to unseen ones.
We propose a novel hierarchical semantic-visual adaptation (HSVA) framework to align semantic and visual domains.
Experiments on four benchmark datasets demonstrate HSVA achieves superior performance on both conventional and generalized ZSL.
arXiv Detail & Related papers (2021-09-30T14:27:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.