When Trackers Date Fish: A Benchmark and Framework for Underwater Multiple Fish Tracking
- URL: http://arxiv.org/abs/2507.06400v1
- Date: Tue, 08 Jul 2025 21:08:12 GMT
- Title: When Trackers Date Fish: A Benchmark and Framework for Underwater Multiple Fish Tracking
- Authors: Weiran Li, Yeqiang Liu, Qiannan Guo, Yijie Wei, Hwa Liang Leo, Zhenbo Li,
- Abstract summary: Multiple Fish Tracking dataset 2025 (MFT25) is the first comprehensive dataset specifically designed for underwater multiple fish tracking.<n>Our dataset captures various underwater environments, fish species, and challenging conditions including occlusions, similar appearances, and erratic motion patterns.<n>We introduce Scale-aware and Unscented Tracker (SU-T), a specialized tracking framework featuring an Unscented Kalman Filter (UKF) optimized for non-linear fish swimming patterns.
- Score: 3.5294997953439426
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multiple object tracking (MOT) technology has made significant progress in terrestrial applications, but underwater tracking scenarios remain underexplored despite their importance to marine ecology and aquaculture. We present Multiple Fish Tracking Dataset 2025 (MFT25), the first comprehensive dataset specifically designed for underwater multiple fish tracking, featuring 15 diverse video sequences with 408,578 meticulously annotated bounding boxes across 48,066 frames. Our dataset captures various underwater environments, fish species, and challenging conditions including occlusions, similar appearances, and erratic motion patterns. Additionally, we introduce Scale-aware and Unscented Tracker (SU-T), a specialized tracking framework featuring an Unscented Kalman Filter (UKF) optimized for non-linear fish swimming patterns and a novel Fish-Intersection-over-Union (FishIoU) matching that accounts for the unique morphological characteristics of aquatic species. Extensive experiments demonstrate that our SU-T baseline achieves state-of-the-art performance on MFT25, with 34.1 HOTA and 44.6 IDF1, while revealing fundamental differences between fish tracking and terrestrial object tracking scenarios. MFT25 establishes a robust foundation for advancing research in underwater tracking systems with important applications in marine biology, aquaculture monitoring, and ecological conservation. The dataset and codes are released at https://vranlee.github.io/SU-T/.
Related papers
- A Framework for Multi-View Multiple Object Tracking using Single-View Multi-Object Trackers on Fish Data [0.559239450391449]
This thesis adapts state-of-the-art single-view MOT models, FairMOT and YOLOv8, for underwater fish detecting and tracking in ecological studies.<n>The proposed framework detects fish entities with a relative accuracy of 47% and employs stereo-matching techniques to produce a novel 3D output.
arXiv Detail & Related papers (2025-05-22T18:12:08Z) - Image-Based Relocalization and Alignment for Long-Term Monitoring of Dynamic Underwater Environments [57.59857784298534]
We propose an integrated pipeline that combines Visual Place Recognition (VPR), feature matching, and image segmentation on video-derived images.<n>This method enables robust identification of revisited areas, estimation of rigid transformations, and downstream analysis of ecosystem changes.
arXiv Detail & Related papers (2025-03-06T05:13:19Z) - MPT: A Large-scale Multi-Phytoplankton Tracking Benchmark [36.37530623015916]
We propose a benchmark dataset, Multiple Phytoplankton Tracking (MPT), which covers diverse background information and variations in motion during observation.<n>The dataset includes 27 species of phytoplankton and zooplankton, 14 different backgrounds to simulate diverse and complex underwater environments, and a total of 140 videos.<n>We introduce an additional feature extractor to predict the residuals of the standard feature extractor's output, and compute multi-scale frame-to-frame similarity based on features from different layers of the extractor.
arXiv Detail & Related papers (2024-10-22T04:57:28Z) - Underwater Camouflaged Object Tracking Meets Vision-Language SAM2 [60.47622353256502]
We propose the first large-scale multi-modal underwater camouflaged object tracking dataset, namely UW-COT220.<n>Based on the proposed dataset, this work first evaluates current advanced visual object tracking methods, including SAM- and SAM2-based trackers, in challenging underwater environments.<n>Our findings highlight the improvements of SAM2 over SAM, demonstrating its enhanced ability to handle the complexities of underwater camouflaged objects.
arXiv Detail & Related papers (2024-09-25T13:10:03Z) - Improving Underwater Visual Tracking With a Large Scale Dataset and
Image Enhancement [70.2429155741593]
This paper presents a new dataset and general tracker enhancement method for Underwater Visual Object Tracking (UVOT)
It poses distinct challenges; the underwater environment exhibits non-uniform lighting conditions, low visibility, lack of sharpness, low contrast, camouflage, and reflections from suspended particles.
We propose a novel underwater image enhancement algorithm designed specifically to boost tracking quality.
The method has resulted in a significant performance improvement, of up to 5.0% AUC, of state-of-the-art (SOTA) visual trackers.
arXiv Detail & Related papers (2023-08-30T07:41:26Z) - BrackishMOT: The Brackish Multi-Object Tracking Dataset [20.52569822945148]
There exist no publicly available annotated underwater multi-object tracking (MOT) datasets captured in turbid environments.
BrackishMOT consists of 98 sequences captured in the wild. Alongside the novel dataset, we present baseline results by training a state-of-the-art tracker.
We analyse the effects of including synthetic data during training and show that a combination of real and synthetic underwater training data can enhance tracking performance.
arXiv Detail & Related papers (2023-02-21T13:02:36Z) - AVisT: A Benchmark for Visual Object Tracking in Adverse Visibility [125.77396380698639]
AVisT is a benchmark for visual tracking in diverse scenarios with adverse visibility.
AVisT comprises 120 challenging sequences with 80k annotated frames, spanning 18 diverse scenarios.
We benchmark 17 popular and recent trackers on AVisT with detailed analysis of their tracking performance across attributes.
arXiv Detail & Related papers (2022-08-14T17:49:37Z) - Visible-Thermal UAV Tracking: A Large-Scale Benchmark and New Baseline [80.13652104204691]
In this paper, we construct a large-scale benchmark with high diversity for visible-thermal UAV tracking (VTUAV)
We provide a coarse-to-fine attribute annotation, where frame-level attributes are provided to exploit the potential of challenge-specific trackers.
In addition, we design a new RGB-T baseline, named Hierarchical Multi-modal Fusion Tracker (HMFT), which fuses RGB-T data in various levels.
arXiv Detail & Related papers (2022-04-08T15:22:33Z) - A Survey of Fish Tracking Techniques Based on Computer Vision [11.994865945394139]
This paper presents a review of the advancements of fish tracking technologies over the past seven years-2023.
It explores diverse fish tracking techniques with an emphasis on fundamental localization and tracking methods.
It also summarizes open-source datasets, evaluation metrics, challenges, and applications in fish tracking research.
arXiv Detail & Related papers (2021-10-06T07:46:35Z) - Movement Tracks for the Automatic Detection of Fish Behavior in Videos [63.85815474157357]
We offer a dataset of sablefish (Anoplopoma fimbria) startle behaviors in underwater videos, and investigate the use of deep learning (DL) methods for behavior detection on it.
Our proposed detection system identifies fish instances using DL-based frameworks, determines trajectory tracks, derives novel behavior-specific features, and employs Long Short-Term Memory (LSTM) networks to identify startle behavior in sablefish.
arXiv Detail & Related papers (2020-11-28T05:51:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.