Mask6D: Masked Pose Priors For 6D Object Pose Estimation
- URL: http://arxiv.org/abs/2507.06486v1
- Date: Wed, 09 Jul 2025 02:06:49 GMT
- Title: Mask6D: Masked Pose Priors For 6D Object Pose Estimation
- Authors: Yuechen Xie, Haobo Jiang, Jin Xie,
- Abstract summary: We propose a pose estimation-specific pre-training strategy named Mask6D.<n>Our approach incorporates pose-aware 2D-3D correspondence maps and visible mask maps as additional modal information.<n>Our method outperforms previous end-to-end pose estimation methods.
- Score: 12.600659693194874
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Robust 6D object pose estimation in cluttered or occluded conditions using monocular RGB images remains a challenging task. One reason is that current pose estimation networks struggle to extract discriminative, pose-aware features using 2D feature backbones, especially when the available RGB information is limited due to target occlusion in cluttered scenes. To mitigate this, we propose a novel pose estimation-specific pre-training strategy named Mask6D. Our approach incorporates pose-aware 2D-3D correspondence maps and visible mask maps as additional modal information, which is combined with RGB images for the reconstruction-based model pre-training. Essentially, this 2D-3D correspondence maps a transformed 3D object model to 2D pixels, reflecting the pose information of the target in camera coordinate system. Meanwhile, the integrated visible mask map can effectively guide our model to disregard cluttered background information. In addition, an object-focused pre-training loss function is designed to further facilitate our network to remove the background interference. Finally, we fine-tune our pre-trained pose prior-aware network via conventional pose training strategy to realize the reliable pose prediction. Extensive experiments verify that our method outperforms previous end-to-end pose estimation methods.
Related papers
- UA-Pose: Uncertainty-Aware 6D Object Pose Estimation and Online Object Completion with Partial References [14.762839788171584]
We propose UA-Pose, an uncertainty-aware approach for 6D object pose estimation and online object completion.<n>We evaluate our method on the YCB-Video, YCBInEOAT, and HO3D datasets, including RGBD sequences of YCB objects manipulated by robots and human hands.
arXiv Detail & Related papers (2025-06-09T17:58:12Z) - Any6D: Model-free 6D Pose Estimation of Novel Objects [76.30057578269668]
We introduce Any6D, a model-free framework for 6D object pose estimation.<n>It requires only a single RGB-D anchor image to estimate both the 6D pose and size of unknown objects in novel scenes.<n>We evaluate our method on five challenging datasets.
arXiv Detail & Related papers (2025-03-24T13:46:21Z) - Pseudo Flow Consistency for Self-Supervised 6D Object Pose Estimation [14.469317161361202]
We propose a 6D object pose estimation method that can be trained with pure RGB images without any auxiliary information.
We evaluate our method on three challenging datasets and demonstrate that it outperforms state-of-the-art self-supervised methods significantly.
arXiv Detail & Related papers (2023-08-19T13:52:18Z) - 3D Neural Embedding Likelihood: Probabilistic Inverse Graphics for
Robust 6D Pose Estimation [50.15926681475939]
Inverse graphics aims to infer the 3D scene structure from 2D images.
We introduce probabilistic modeling to quantify uncertainty and achieve robustness in 6D pose estimation tasks.
3DNEL effectively combines learned neural embeddings from RGB with depth information to improve robustness in sim-to-real 6D object pose estimation from RGB-D images.
arXiv Detail & Related papers (2023-02-07T20:48:35Z) - Coupled Iterative Refinement for 6D Multi-Object Pose Estimation [64.7198752089041]
Given a set of known 3D objects and an RGB or RGB-D input image, we detect and estimate the 6D pose of each object.
Our approach iteratively refines both pose and correspondence in a tightly coupled manner, allowing us to dynamically remove outliers to improve accuracy.
arXiv Detail & Related papers (2022-04-26T18:00:08Z) - NeRF-Pose: A First-Reconstruct-Then-Regress Approach for
Weakly-supervised 6D Object Pose Estimation [44.42449011619408]
We present a weakly-supervised reconstruction-based pipeline, named NeRF-Pose, which needs only 2D object segmentation and known relative camera poses during training.
A NeRF-enabled RAN+SAC algorithm is used to estimate stable and accurate pose from the predicted correspondences.
Experiments on LineMod-Occlusion show that the proposed method has state-of-the-art accuracy in comparison to the best 6D pose estimation methods.
arXiv Detail & Related papers (2022-03-09T15:28:02Z) - Weakly Supervised Learning of Keypoints for 6D Object Pose Estimation [73.40404343241782]
We propose a weakly supervised 6D object pose estimation approach based on 2D keypoint detection.
Our approach achieves comparable performance with state-of-the-art fully supervised approaches.
arXiv Detail & Related papers (2022-03-07T16:23:47Z) - DSC-PoseNet: Learning 6DoF Object Pose Estimation via Dual-scale
Consistency [43.09728251735362]
We present a two-step pose estimation framework to attain 6DoF object poses from 2D object bounding-boxes.
In the first step, the framework learns to segment objects from real and synthetic data.
In the second step, we design a dual-scale pose estimation network, namely DSC-PoseNet.
Our method outperforms state-of-the-art models trained on synthetic data by a large margin.
arXiv Detail & Related papers (2021-04-08T10:19:35Z) - GDRNPP: A Geometry-guided and Fully Learning-based Object Pose Estimator [51.89441403642665]
6D pose estimation of rigid objects is a long-standing and challenging task in computer vision.<n>Recently, the emergence of deep learning reveals the potential of Convolutional Neural Networks (CNNs) to predict reliable 6D poses.<n>This paper introduces a fully learning-based object pose estimator.
arXiv Detail & Related papers (2021-02-24T09:11:31Z) - Spatial Attention Improves Iterative 6D Object Pose Estimation [52.365075652976735]
We propose a new method for 6D pose estimation refinement from RGB images.
Our main insight is that after the initial pose estimate, it is important to pay attention to distinct spatial features of the object.
We experimentally show that this approach learns to attend to salient spatial features and learns to ignore occluded parts of the object, leading to better pose estimation across datasets.
arXiv Detail & Related papers (2021-01-05T17:18:52Z) - Neural Mesh Refiner for 6-DoF Pose Estimation [10.62836310872743]
Deep learning has shown to be effective for robust and real-time monocular pose estimation.
This paper bridges the gap between 2D mask generation and 3D location prediction via a differentiable neural mesh.
arXiv Detail & Related papers (2020-03-17T07:12:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.