MoFE-Time: Mixture of Frequency Domain Experts for Time-Series Forecasting Models
- URL: http://arxiv.org/abs/2507.06502v1
- Date: Wed, 09 Jul 2025 03:00:56 GMT
- Title: MoFE-Time: Mixture of Frequency Domain Experts for Time-Series Forecasting Models
- Authors: Yiwen Liu, Chenyu Zhang, Junjie Song, Siqi Chen, Sun Yin, Zihan Wang, Lingming Zeng, Yuji Cao, Junming Jiao,
- Abstract summary: MoFE-Time integrates time and frequency domain features within a Mixture of Experts (MoE) network.<n>MoFE-Time has achieved new state-of-the-art performance, reducing MSE and MAE by 6.95% and 6.02% compared to the representative methods Time-MoE.<n>Our method achieves outstanding results on this dataset, underscoring the effectiveness of the MoFE-Time model in practical commercial applications.
- Score: 11.374098795890738
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As a prominent data modality task, time series forecasting plays a pivotal role in diverse applications. With the remarkable advancements in Large Language Models (LLMs), the adoption of LLMs as the foundational architecture for time series modeling has gained significant attention. Although existing models achieve some success, they rarely both model time and frequency characteristics in a pretraining-finetuning paradigm leading to suboptimal performance in predictions of complex time series, which requires both modeling periodicity and prior pattern knowledge of signals. We propose MoFE-Time, an innovative time series forecasting model that integrates time and frequency domain features within a Mixture of Experts (MoE) network. Moreover, we use the pretraining-finetuning paradigm as our training framework to effectively transfer prior pattern knowledge across pretraining and finetuning datasets with different periodicity distributions. Our method introduces both frequency and time cells as experts after attention modules and leverages the MoE routing mechanism to construct multidimensional sparse representations of input signals. In experiments on six public benchmarks, MoFE-Time has achieved new state-of-the-art performance, reducing MSE and MAE by 6.95% and 6.02% compared to the representative methods Time-MoE. Beyond the existing evaluation benchmarks, we have developed a proprietary dataset, NEV-sales, derived from real-world business scenarios. Our method achieves outstanding results on this dataset, underscoring the effectiveness of the MoFE-Time model in practical commercial applications.
Related papers
- Breaking Silos: Adaptive Model Fusion Unlocks Better Time Series Forecasting [64.45587649141842]
Time-series forecasting plays a critical role in many real-world applications.<n>No single model consistently outperforms others across different test samples, but instead (ii) each model excels in specific cases.<n>We introduce TimeFuse, a framework for collective time-series forecasting with sample-level adaptive fusion of heterogeneous models.
arXiv Detail & Related papers (2025-05-24T00:45:07Z) - LLM4FTS: Enhancing Large Language Models for Financial Time Series Prediction [0.0]
Traditional machine learning models exhibit limitations in this forecasting task constrained by their restricted model capacity.<n>We propose $LLM4FTS$, a novel framework that enhances temporal sequence modeling through learnable patch segmentation and dynamic wavelet convolution modules.<n>Experiments on real-world financial datasets substantiate the framework's efficacy, demonstrating superior performance in capturing complex market patterns and achieving state-of-the-art results in stock return prediction.
arXiv Detail & Related papers (2025-05-05T06:48:34Z) - UniSTD: Towards Unified Spatio-Temporal Learning across Diverse Disciplines [64.84631333071728]
We introduce bfUnistage, a unified Transformer-based framework fortemporal modeling.<n>Our work demonstrates that a task-specific vision-text can build a generalizable model fortemporal learning.<n>We also introduce a temporal module to incorporate temporal dynamics explicitly.
arXiv Detail & Related papers (2025-03-26T17:33:23Z) - General Time-series Model for Universal Knowledge Representation of Multivariate Time-Series data [61.163542597764796]
We show that time series with different time granularities (or corresponding frequency resolutions) exhibit distinct joint distributions in the frequency domain.<n>A novel Fourier knowledge attention mechanism is proposed to enable learning time-aware representations from both the temporal and frequency domains.<n>An autoregressive blank infilling pre-training framework is incorporated to time series analysis for the first time, leading to a generative tasks agnostic pre-training strategy.
arXiv Detail & Related papers (2025-02-05T15:20:04Z) - MFF-FTNet: Multi-scale Feature Fusion across Frequency and Temporal Domains for Time Series Forecasting [18.815152183468673]
Time series forecasting is crucial in many fields, yet current deep learning models struggle with noise, data sparsity, and capturing complex patterns.
This paper presents MFF-FTNet, a novel framework addressing these challenges by combining contrastive learning with multi-scale feature extraction.
Extensive experiments on five real-world datasets demonstrate that MFF-FTNet significantly outperforms state-of-the-art models.
arXiv Detail & Related papers (2024-11-26T12:41:42Z) - Moirai-MoE: Empowering Time Series Foundation Models with Sparse Mixture of Experts [103.725112190618]
This paper introduces Moirai-MoE, using a single input/output projection layer while delegating the modeling of diverse time series patterns to the sparse mixture of experts.
Extensive experiments on 39 datasets demonstrate the superiority of Moirai-MoE over existing foundation models in both in-distribution and zero-shot scenarios.
arXiv Detail & Related papers (2024-10-14T13:01:11Z) - PDETime: Rethinking Long-Term Multivariate Time Series Forecasting from
the perspective of partial differential equations [49.80959046861793]
We present PDETime, a novel LMTF model inspired by the principles of Neural PDE solvers.
Our experimentation across seven diversetemporal real-world LMTF datasets reveals that PDETime adapts effectively to the intrinsic nature of the data.
arXiv Detail & Related papers (2024-02-25T17:39:44Z) - Timer: Generative Pre-trained Transformers Are Large Time Series Models [83.03091523806668]
This paper aims at the early development of large time series models (LTSM)
During pre-training, we curate large-scale datasets with up to 1 billion time points.
To meet diverse application needs, we convert forecasting, imputation, and anomaly detection of time series into a unified generative task.
arXiv Detail & Related papers (2024-02-04T06:55:55Z) - TEMPO: Prompt-based Generative Pre-trained Transformer for Time Series Forecasting [24.834846119163885]
We propose a novel framework, TEMPO, that can effectively learn time series representations.
TEMPO expands the capability for dynamically modeling real-world temporal phenomena from data within diverse domains.
arXiv Detail & Related papers (2023-10-08T00:02:25Z) - Time-LLM: Time Series Forecasting by Reprogramming Large Language Models [110.20279343734548]
Time series forecasting holds significant importance in many real-world dynamic systems.
We present Time-LLM, a reprogramming framework to repurpose large language models for time series forecasting.
Time-LLM is a powerful time series learner that outperforms state-of-the-art, specialized forecasting models.
arXiv Detail & Related papers (2023-10-03T01:31:25Z) - Improving the Accuracy of Global Forecasting Models using Time Series
Data Augmentation [7.38079566297881]
Forecasting models that are trained across sets of many time series, known as Global Forecasting Models (GFM), have shown promising results in forecasting competitions and real-world applications.
We propose a novel, data augmentation based forecasting framework that is capable of improving the baseline accuracy of GFM models in less data-abundant settings.
arXiv Detail & Related papers (2020-08-06T13:52:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.