Instance-Wise Monotonic Calibration by Constrained Transformation
- URL: http://arxiv.org/abs/2507.06516v1
- Date: Wed, 09 Jul 2025 03:32:49 GMT
- Title: Instance-Wise Monotonic Calibration by Constrained Transformation
- Authors: Yunrui Zhang, Gustavo Batista, Salil S. Kanhere,
- Abstract summary: A common approach for calibration is fitting a post-hoc calibration map on unseen validation data.<n>Most existing post-hoc calibration methods do not guarantee monotonicity.<n>We propose a family of novel monotonic post-hoc calibration methods.
- Score: 7.331937231993605
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep neural networks often produce miscalibrated probability estimates, leading to overconfident predictions. A common approach for calibration is fitting a post-hoc calibration map on unseen validation data that transforms predicted probabilities. A key desirable property of the calibration map is instance-wise monotonicity (i.e., preserving the ranking of probability outputs). However, most existing post-hoc calibration methods do not guarantee monotonicity. Previous monotonic approaches either use an under-parameterized calibration map with limited expressive ability or rely on black-box neural networks, which lack interpretability and robustness. In this paper, we propose a family of novel monotonic post-hoc calibration methods, which employs a constrained calibration map parameterized linearly with respect to the number of classes. Our proposed approach ensures expressiveness, robustness, and interpretability while preserving the relative ordering of the probability output by formulating the proposed calibration map as a constrained optimization problem. Our proposed methods achieve state-of-the-art performance across datasets with different deep neural network models, outperforming existing calibration methods while being data and computation-efficient. Our code is available at https://github.com/YunruiZhang/Calibration-by-Constrained-Transformation
Related papers
- Calibration by Distribution Matching: Trainable Kernel Calibration
Metrics [56.629245030893685]
We introduce kernel-based calibration metrics that unify and generalize popular forms of calibration for both classification and regression.
These metrics admit differentiable sample estimates, making it easy to incorporate a calibration objective into empirical risk minimization.
We provide intuitive mechanisms to tailor calibration metrics to a decision task, and enforce accurate loss estimation and no regret decisions.
arXiv Detail & Related papers (2023-10-31T06:19:40Z) - Faster Recalibration of an Online Predictor via Approachability [12.234317585724868]
We introduce a technique for taking an online predictive model which might not be calibrated and transforming its predictions to calibrated predictions without much increase to the loss of the original model.
Our proposed algorithm achieves calibration and accuracy at a faster rate than existing techniques arXiv:1607.03594 and is the first algorithm to offer a flexible tradeoff between calibration error and accuracy in the online setting.
arXiv Detail & Related papers (2023-10-25T20:59:48Z) - Sharp Calibrated Gaussian Processes [58.94710279601622]
State-of-the-art approaches for designing calibrated models rely on inflating the Gaussian process posterior variance.
We present a calibration approach that generates predictive quantiles using a computation inspired by the vanilla Gaussian process posterior variance.
Our approach is shown to yield a calibrated model under reasonable assumptions.
arXiv Detail & Related papers (2023-02-23T12:17:36Z) - On Calibrating Semantic Segmentation Models: Analyses and An Algorithm [51.85289816613351]
We study the problem of semantic segmentation calibration.
Model capacity, crop size, multi-scale testing, and prediction correctness have impact on calibration.
We propose a simple, unifying, and effective approach, namely selective scaling.
arXiv Detail & Related papers (2022-12-22T22:05:16Z) - A Consistent and Differentiable Lp Canonical Calibration Error Estimator [21.67616079217758]
Deep neural networks are poorly calibrated and tend to output overconfident predictions.
We propose a low-bias, trainable calibration error estimator based on Dirichlet kernel density estimates.
Our method has a natural choice of kernel, and can be used to generate consistent estimates of other quantities.
arXiv Detail & Related papers (2022-10-13T15:11:11Z) - Parametric and Multivariate Uncertainty Calibration for Regression and
Object Detection [4.630093015127541]
We show that common detection models overestimate the spatial uncertainty in comparison to the observed error.
Our experiments show that the simple Isotonic Regression recalibration method is sufficient to achieve a good calibrated uncertainty.
In contrast, if normal distributions are required for subsequent processes, our GP-Normal recalibration method yields the best results.
arXiv Detail & Related papers (2022-07-04T08:00:20Z) - T-Cal: An optimal test for the calibration of predictive models [49.11538724574202]
We consider detecting mis-calibration of predictive models using a finite validation dataset as a hypothesis testing problem.
detecting mis-calibration is only possible when the conditional probabilities of the classes are sufficiently smooth functions of the predictions.
We propose T-Cal, a minimax test for calibration based on a de-biased plug-in estimator of the $ell$-Expected Error (ECE)
arXiv Detail & Related papers (2022-03-03T16:58:54Z) - Calibrated and Sharp Uncertainties in Deep Learning via Density Estimation [10.209143402485406]
This paper argues that calibration is important in practice and is easy to maintain.<n>We introduce a simple training procedure based on recalibration that yields calibrated models without sacrificing overall performance.
arXiv Detail & Related papers (2021-12-14T06:19:05Z) - Scalable Marginal Likelihood Estimation for Model Selection in Deep
Learning [78.83598532168256]
Marginal-likelihood based model-selection is rarely used in deep learning due to estimation difficulties.
Our work shows that marginal likelihoods can improve generalization and be useful when validation data is unavailable.
arXiv Detail & Related papers (2021-04-11T09:50:24Z) - Calibration of Neural Networks using Splines [51.42640515410253]
Measuring calibration error amounts to comparing two empirical distributions.
We introduce a binning-free calibration measure inspired by the classical Kolmogorov-Smirnov (KS) statistical test.
Our method consistently outperforms existing methods on KS error as well as other commonly used calibration measures.
arXiv Detail & Related papers (2020-06-23T07:18:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.