Designing Adaptive Algorithms Based on Reinforcement Learning for Dynamic Optimization of Sliding Window Size in Multi-Dimensional Data Streams
- URL: http://arxiv.org/abs/2507.06901v1
- Date: Wed, 09 Jul 2025 14:40:35 GMT
- Title: Designing Adaptive Algorithms Based on Reinforcement Learning for Dynamic Optimization of Sliding Window Size in Multi-Dimensional Data Streams
- Authors: Abolfazl Zarghani, Sadegh Abedi,
- Abstract summary: This paper proposes a novel reinforcement learning (RL)-based approach to dynamically optimize sliding window sizes for multi-dimensional data streams.<n>We use a Dueling Deep Q-Network (DQN) with prioritized experience replay to handle non-stationarity and high-dimensionality.<n>Our method, RL-Window, outperforms state-of-the-art methods like ADWIN and CNN-Adaptive in classification accuracy, drift robustness, and computational efficiency.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multi-dimensional data streams, prevalent in applications like IoT, financial markets, and real-time analytics, pose significant challenges due to their high velocity, unbounded nature, and complex inter-dimensional dependencies. Sliding window techniques are critical for processing such streams, but fixed-size windows struggle to adapt to dynamic changes like concept drift or bursty patterns. This paper proposes a novel reinforcement learning (RL)-based approach to dynamically optimize sliding window sizes for multi-dimensional data streams. By formulating window size selection as an RL problem, we enable an agent to learn an adaptive policy based on stream characteristics, such as variance, correlations, and temporal trends. Our method, RL-Window, leverages a Dueling Deep Q-Network (DQN) with prioritized experience replay to handle non-stationarity and high-dimensionality. Evaluations on benchmark datasets (UCI HAR, PAMAP2, Yahoo! Finance Stream) demonstrate that RL-Window outperforms state-of-the-art methods like ADWIN and CNN-Adaptive in classification accuracy, drift robustness, and computational efficiency. Additional qualitative analyses, extended metrics (e.g., energy efficiency, latency), and a comprehensive dataset characterization further highlight its adaptability and stability, making it suitable for real-time applications.
Related papers
- Communication-Efficient Wireless Federated Fine-Tuning for Large-Scale AI Models [13.742950928229078]
Low-Rank Adaptation (LoRA) addresses these issues by training compact, low-rank matrices instead of fully fine-tuning large models.<n>This paper introduces a wireless federated LoRA fine-tuning framework that optimize both learning performance and communication efficiency.
arXiv Detail & Related papers (2025-05-01T06:15:38Z) - Online Relational Inference for Evolving Multi-agent Interacting Systems [14.275434303742328]
Online Inference (ORI) is designed to efficiently identify hidden interaction graphs in evolving multi-agent interacting systems.
Unlike traditional offline methods that rely on a fixed training set, ORI employs online backpropagation, updating the model with each new data point.
A key innovation is the use of an adjacency matrix as a trainable parameter, optimized through a new adaptive learning technique called AdaRelation.
arXiv Detail & Related papers (2024-11-03T05:43:55Z) - Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
Task-oriented edge computing addresses this by shifting data analysis to the edge.
Existing methods struggle to balance high model performance with low resource consumption.
We propose a novel co-design framework to optimize neural network architecture.
arXiv Detail & Related papers (2024-10-29T19:02:54Z) - A Distribution-Aware Flow-Matching for Generating Unstructured Data for Few-Shot Reinforcement Learning [1.0709300917082865]
We introduce a distribution-aware flow matching approach to generate synthetic unstructured data for few-shot reinforcement learning.<n>Our approach addresses key challenges in traditional model-based RL, such as overfitting and data correlation.<n>Results demonstrate that our method achieves stable convergence in terms of maximum Q-value while enhancing frame rates by 30% in the initial timestamps.
arXiv Detail & Related papers (2024-09-21T15:50:59Z) - Enhancing Sample Efficiency and Exploration in Reinforcement Learning through the Integration of Diffusion Models and Proximal Policy Optimization [1.631115063641726]
We propose a framework that enhances PPO algorithms by incorporating a diffusion model to generate high-quality virtual trajectories for offline datasets.<n>Our contributions are threefold: we explore the potential of diffusion models in RL, particularly for offline datasets, extend the application of online RL to offline environments, and experimentally validate the performance improvements of PPO with diffusion models.
arXiv Detail & Related papers (2024-09-02T19:10:32Z) - Data efficient reinforcement learning and adaptive optimal perimeter
control of network traffic dynamics [0.0]
This work proposes an integral reinforcement learning (IRL) based approach to learning the macroscopic traffic dynamics for adaptive optimal perimeter control.
To reduce the sampling complexity and use the available data more efficiently, the experience replay (ER) technique is introduced to the IRL algorithm.
The convergence of the IRL-based algorithms and the stability of the controlled traffic dynamics are proven via the Lyapunov theory.
arXiv Detail & Related papers (2022-09-13T04:28:49Z) - Dynamic Network-Assisted D2D-Aided Coded Distributed Learning [59.29409589861241]
We propose a novel device-to-device (D2D)-aided coded federated learning method (D2D-CFL) for load balancing across devices.
We derive an optimal compression rate for achieving minimum processing time and establish its connection with the convergence time.
Our proposed method is beneficial for real-time collaborative applications, where the users continuously generate training data.
arXiv Detail & Related papers (2021-11-26T18:44:59Z) - Adaptive Anomaly Detection for Internet of Things in Hierarchical Edge
Computing: A Contextual-Bandit Approach [81.5261621619557]
We propose an adaptive anomaly detection scheme with hierarchical edge computing (HEC)
We first construct multiple anomaly detection DNN models with increasing complexity, and associate each of them to a corresponding HEC layer.
Then, we design an adaptive model selection scheme that is formulated as a contextual-bandit problem and solved by using a reinforcement learning policy network.
arXiv Detail & Related papers (2021-08-09T08:45:47Z) - Behavioral Priors and Dynamics Models: Improving Performance and Domain
Transfer in Offline RL [82.93243616342275]
We introduce Offline Model-based RL with Adaptive Behavioral Priors (MABE)
MABE is based on the finding that dynamics models, which support within-domain generalization, and behavioral priors, which support cross-domain generalization, are complementary.
In experiments that require cross-domain generalization, we find that MABE outperforms prior methods.
arXiv Detail & Related papers (2021-06-16T20:48:49Z) - Optimization-driven Machine Learning for Intelligent Reflecting Surfaces
Assisted Wireless Networks [82.33619654835348]
Intelligent surface (IRS) has been employed to reshape the wireless channels by controlling individual scattering elements' phase shifts.
Due to the large size of scattering elements, the passive beamforming is typically challenged by the high computational complexity.
In this article, we focus on machine learning (ML) approaches for performance in IRS-assisted wireless networks.
arXiv Detail & Related papers (2020-08-29T08:39:43Z) - Tracking Performance of Online Stochastic Learners [57.14673504239551]
Online algorithms are popular in large-scale learning settings due to their ability to compute updates on the fly, without the need to store and process data in large batches.
When a constant step-size is used, these algorithms also have the ability to adapt to drifts in problem parameters, such as data or model properties, and track the optimal solution with reasonable accuracy.
We establish a link between steady-state performance derived under stationarity assumptions and the tracking performance of online learners under random walk models.
arXiv Detail & Related papers (2020-04-04T14:16:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.