The Impact of Background Speech on Interruption Detection in Collaborative Groups
- URL: http://arxiv.org/abs/2507.07280v1
- Date: Wed, 09 Jul 2025 20:57:55 GMT
- Title: The Impact of Background Speech on Interruption Detection in Collaborative Groups
- Authors: Mariah Bradford, Nikhil Krishnaswamy, Nathaniel Blanchard,
- Abstract summary: We analyze interruption detection in single-conversation and multi-group dialogue settings.<n>We then create a state-of-the-art method for interruption identification that is robust to overlapping speech.<n>Our work highlights meaningful linguistic and prosodic information about how interruptions manifest in collaborative group interactions.
- Score: 4.413246337852144
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Interruption plays a crucial role in collaborative learning, shaping group interactions and influencing knowledge construction. AI-driven support can assist teachers in monitoring these interactions. However, most previous work on interruption detection and interpretation has been conducted in single-conversation environments with relatively clean audio. AI agents deployed in classrooms for collaborative learning within small groups will need to contend with multiple concurrent conversations -- in this context, overlapping speech will be ubiquitous, and interruptions will need to be identified in other ways. In this work, we analyze interruption detection in single-conversation and multi-group dialogue settings. We then create a state-of-the-art method for interruption identification that is robust to overlapping speech, and thus could be deployed in classrooms. Further, our work highlights meaningful linguistic and prosodic information about how interruptions manifest in collaborative group interactions. Our investigation also paves the way for future works to account for the influence of overlapping speech from multiple groups when tracking group dialog.
Related papers
- Speech Is Not Enough: Interpreting Nonverbal Indicators of Common Knowledge and Engagement [17.25829281965904]
multimodal analytics is crucial for identifying non-verbal interactions of group members.<n>In this demo, we illustrate our present capabilities at detecting and tracking nonverbal behavior in student task-oriented interactions in the classroom.
arXiv Detail & Related papers (2024-12-08T03:26:44Z) - Conversational Rubert for Detecting Competitive Interruptions in ASR-Transcribed Dialogues [0.6138671548064356]
A system that automatically classifies interruptions can be used in call centers, specifically in the tasks of customer satisfaction monitoring and agent monitoring.
We developed a text-based interruption classification model by preparing an in-house dataset consisting of ASR-transcribed customer support telephone dialogues in Russian.
arXiv Detail & Related papers (2024-07-20T17:25:53Z) - Analysing Cross-Speaker Convergence in Face-to-Face Dialogue through the Lens of Automatically Detected Shared Linguistic Constructions [4.216085185442862]
This study applies a methodology for automatically detecting shared lemmatised constructions to a referential communication corpus.
Our analyses uncover the usage patterns of shared constructions in interaction and reveal that features such as their frequency and the amount of different constructions used for a referent are associated with the degree of object labelling convergence.
arXiv Detail & Related papers (2024-05-14T12:34:25Z) - With a Little Help from my (Linguistic) Friends: Topic Segmentation of
Multi-party Casual Conversations [0.565395466029518]
This paper tries to reach a comparable level of accuracy as recent machine learning based topic segmentation models.
The features we identify as meaningful for this task help us understand better the topical structure of a conversation.
arXiv Detail & Related papers (2024-02-05T09:48:07Z) - Multi-turn Dialogue Comprehension from a Topic-aware Perspective [70.37126956655985]
This paper proposes to model multi-turn dialogues from a topic-aware perspective.
We use a dialogue segmentation algorithm to split a dialogue passage into topic-concentrated fragments in an unsupervised way.
We also present a novel model, Topic-Aware Dual-Attention Matching (TADAM) Network, which takes topic segments as processing elements.
arXiv Detail & Related papers (2023-09-18T11:03:55Z) - Channel-aware Decoupling Network for Multi-turn Dialogue Comprehension [81.47133615169203]
We propose compositional learning for holistic interaction across utterances beyond the sequential contextualization from PrLMs.
We employ domain-adaptive training strategies to help the model adapt to the dialogue domains.
Experimental results show that our method substantially boosts the strong PrLM baselines in four public benchmark datasets.
arXiv Detail & Related papers (2023-01-10T13:18:25Z) - End-to-End Active Speaker Detection [58.7097258722291]
We propose an end-to-end training network where feature learning and contextual predictions are jointly learned.
We also introduce intertemporal graph neural network (iGNN) blocks, which split the message passing according to the main sources of context in the ASD problem.
Experiments show that the aggregated features from the iGNN blocks are more suitable for ASD, resulting in state-of-the art performance.
arXiv Detail & Related papers (2022-03-27T08:55:28Z) - Context-Aware Interaction Network for Question Matching [51.76812857301819]
We propose a context-aware interaction network (COIN) to align two sequences and infer their semantic relationship.
Specifically, each interaction block includes (1) a context-aware cross-attention mechanism to effectively integrate contextual information, and (2) a gate fusion layer to flexibly interpolate aligned representations.
arXiv Detail & Related papers (2021-04-17T05:03:56Z) - Active Speakers in Context [88.22935329360618]
Current methods for active speak er detection focus on modeling short-term audiovisual information from a single speaker.
This paper introduces the Active Speaker Context, a novel representation that models relationships between multiple speakers over long time horizons.
Our experiments show that a structured feature ensemble already benefits the active speaker detection performance.
arXiv Detail & Related papers (2020-05-20T01:14:23Z) - Masking Orchestration: Multi-task Pretraining for Multi-role Dialogue
Representation Learning [50.5572111079898]
Multi-role dialogue understanding comprises a wide range of diverse tasks such as question answering, act classification, dialogue summarization etc.
While dialogue corpora are abundantly available, labeled data, for specific learning tasks, can be highly scarce and expensive.
In this work, we investigate dialogue context representation learning with various types unsupervised pretraining tasks.
arXiv Detail & Related papers (2020-02-27T04:36:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.