T-GVC: Trajectory-Guided Generative Video Coding at Ultra-Low Bitrates
- URL: http://arxiv.org/abs/2507.07633v3
- Date: Tue, 05 Aug 2025 12:55:41 GMT
- Title: T-GVC: Trajectory-Guided Generative Video Coding at Ultra-Low Bitrates
- Authors: Zhitao Wang, Hengyu Man, Wenrui Li, Xingtao Wang, Xiaopeng Fan, Debin Zhao,
- Abstract summary: Trajectory-Guided Generative Video Coding (dubbed TGVC) bridges low-level motion tracking with high-level semantic understanding.<n>Our framework achieves more precise motion control than existing text-guided methods.
- Score: 29.598249500198904
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advances in video generation techniques have given rise to an emerging paradigm of generative video coding for Ultra-Low Bitrate (ULB) scenarios by leveraging powerful generative priors. However, most existing methods are limited by domain specificity (e.g., facial or human videos) or excessive dependence on high-level text guidance, which tend to inadequately capture fine-grained motion details, leading to unrealistic or incoherent reconstructions. To address these challenges, we propose Trajectory-Guided Generative Video Coding (dubbed T-GVC), a novel framework that bridges low-level motion tracking with high-level semantic understanding. T-GVC features a semantic-aware sparse motion sampling pipeline that extracts pixel-wise motion as sparse trajectory points based on their semantic importance, significantly reducing the bitrate while preserving critical temporal semantic information. In addition, by integrating trajectory-aligned loss constraints into diffusion processes, we introduce a training-free guidance mechanism in latent space to ensure physically plausible motion patterns without sacrificing the inherent capabilities of generative models. Experimental results demonstrate that T-GVC outperforms both traditional and neural video codecs under ULB conditions. Furthermore, additional experiments confirm that our framework achieves more precise motion control than existing text-guided methods, paving the way for a novel direction of generative video coding guided by geometric motion modeling.
Related papers
- STAGE: A Stream-Centric Generative World Model for Long-Horizon Driving-Scene Simulation [24.86836673853292]
STAGE is an auto-regressive framework that pioneers hierarchical feature coordination and multiphase optimization for sustainable video synthesis.<n>HTFT enhances temporal consistency between video frames throughout the video generation process.<n>We generated 600 frames of high-quality driving videos on the Nuscenes dataset, which far exceeds the maximum length achievable by existing methods.
arXiv Detail & Related papers (2025-06-16T06:53:05Z) - Absolute Coordinates Make Motion Generation Easy [8.153961351540834]
State-of-the-art text-to-motion generation models rely on the kinematic-aware, local-relative motion representation popularized by HumanML3D.<n>We propose a radically simplified and long-abandoned alternative for text-to-motion generation: absolute joint coordinates in global space.
arXiv Detail & Related papers (2025-05-26T00:36:00Z) - Generative Pre-trained Autoregressive Diffusion Transformer [54.476056835275415]
GPDiT is a Generative Pre-trained Autoregressive Diffusion Transformer.<n>It unifies the strengths of diffusion and autoregressive modeling for long-range video synthesis.<n>It autoregressively predicts future latent frames using a diffusion loss, enabling natural modeling of motion dynamics.
arXiv Detail & Related papers (2025-05-12T08:32:39Z) - RAGME: Retrieval Augmented Video Generation for Enhanced Motion Realism [73.38167494118746]
We propose a framework to improve the realism of motion in generated videos.<n>We advocate for the incorporation of a retrieval mechanism during the generation phase.<n>Our pipeline is designed to apply to any text-to-video diffusion model.
arXiv Detail & Related papers (2025-04-09T08:14:05Z) - EfficientMT: Efficient Temporal Adaptation for Motion Transfer in Text-to-Video Diffusion Models [73.96414072072048]
Existing motion transfer methods explored the motion representations of reference videos to guide generation.<n>We propose EfficientMT, a novel and efficient end-to-end framework for video motion transfer.<n>Our experiments demonstrate that our EfficientMT outperforms existing methods in efficiency while maintaining flexible motion controllability.
arXiv Detail & Related papers (2025-03-25T05:51:14Z) - Training-Free Motion-Guided Video Generation with Enhanced Temporal Consistency Using Motion Consistency Loss [35.69606926024434]
We propose a simple yet effective solution that combines an initial-noise-based approach with a novel motion consistency loss.<n>We then design a motion consistency loss to maintain similar feature correlation patterns in the generated video.<n>This approach improves temporal consistency across various motion control tasks while preserving the benefits of a training-free setup.
arXiv Detail & Related papers (2025-01-13T18:53:08Z) - Generative Human Video Compression with Multi-granularity Temporal Trajectory Factorization [13.341123726068652]
We propose a novel Multi-granularity Temporal Trajectory Factorization framework for generative human video compression.
Experimental results show that proposed method outperforms latest generative models and the state-of-the-art video coding standard Versatile Video Coding.
arXiv Detail & Related papers (2024-10-14T05:34:32Z) - StyleInV: A Temporal Style Modulated Inversion Network for Unconditional
Video Generation [73.54398908446906]
We introduce a novel motion generator design that uses a learning-based inversion network for GAN.
Our method supports style transfer with simple fine-tuning when the encoder is paired with a pretrained StyleGAN generator.
arXiv Detail & Related papers (2023-08-31T17:59:33Z) - Control-A-Video: Controllable Text-to-Video Diffusion Models with Motion Prior and Reward Feedback Learning [50.60891619269651]
Control-A-Video is a controllable T2V diffusion model that can generate videos conditioned on text prompts and reference control maps like edge and depth maps.
We propose novel strategies to incorporate content prior and motion prior into the diffusion-based generation process.
Our framework generates higher-quality, more consistent videos compared to existing state-of-the-art methods in controllable text-to-video generation.
arXiv Detail & Related papers (2023-05-23T09:03:19Z) - Implicit Motion Handling for Video Camouflaged Object Detection [60.98467179649398]
We propose a new video camouflaged object detection (VCOD) framework.
It can exploit both short-term and long-term temporal consistency to detect camouflaged objects from video frames.
arXiv Detail & Related papers (2022-03-14T17:55:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.