Tree-Mamba: A Tree-Aware Mamba for Underwater Monocular Depth Estimation
- URL: http://arxiv.org/abs/2507.07687v1
- Date: Thu, 10 Jul 2025 12:10:51 GMT
- Title: Tree-Mamba: A Tree-Aware Mamba for Underwater Monocular Depth Estimation
- Authors: Peixian Zhuang, Yijian Wang, Zhenqi Fu, Hongliang Zhang, Sam Kwong, Chongyi Li,
- Abstract summary: Underwater Monocular Depth Estimation (UMDE) is a critical task that aims to estimate high-precision depth maps from underwater degraded images.<n>We develop a novel tree-aware Mamba method, dubbed Tree-Mamba, for estimating accurate monocular depth maps from underwater degraded images.<n>We construct an underwater depth estimation benchmark (called BlueDepth), which consists of 38,162 underwater image pairs with reliable depth labels.
- Score: 85.17735565146106
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Underwater Monocular Depth Estimation (UMDE) is a critical task that aims to estimate high-precision depth maps from underwater degraded images caused by light absorption and scattering effects in marine environments. Recently, Mamba-based methods have achieved promising performance across various vision tasks; however, they struggle with the UMDE task because their inflexible state scanning strategies fail to model the structural features of underwater images effectively. Meanwhile, existing UMDE datasets usually contain unreliable depth labels, leading to incorrect object-depth relationships between underwater images and their corresponding depth maps. To overcome these limitations, we develop a novel tree-aware Mamba method, dubbed Tree-Mamba, for estimating accurate monocular depth maps from underwater degraded images. Specifically, we propose a tree-aware scanning strategy that adaptively constructs a minimum spanning tree based on feature similarity. The spatial topological features among the tree nodes are then flexibly aggregated through bottom-up and top-down traversals, enabling stronger multi-scale feature representation capabilities. Moreover, we construct an underwater depth estimation benchmark (called BlueDepth), which consists of 38,162 underwater image pairs with reliable depth labels. This benchmark serves as a foundational dataset for training existing deep learning-based UMDE methods to learn accurate object-depth relationships. Extensive experiments demonstrate the superiority of the proposed Tree-Mamba over several leading methods in both qualitative results and quantitative evaluations with competitive computational efficiency. Code and dataset will be available at https://wyjgr.github.io/Tree-Mamba.html.
Related papers
- Occlusion Boundary and Depth: Mutual Enhancement via Multi-Task Learning [3.4174356345935393]
We propose MoDOT, a novel method that jointly estimates depth and OBs from a single image.<n>MoDOT incorporates a new module, CASM, which combines cross-attention and multi-scale strip convolutions to leverage mid-level OB features.<n>Experiments demonstrate the mutual benefits of jointly estimating depth and OBs, and validate the effectiveness of MoDOT's design.
arXiv Detail & Related papers (2025-05-27T14:15:19Z) - A Novel Solution for Drone Photogrammetry with Low-overlap Aerial Images using Monocular Depth Estimation [6.689484367905018]
Low-overlap aerial imagery poses significant challenges to traditional photogrammetric methods.<n>We propose a novel workflow based on monocular depth estimation to address the limitations of conventional techniques.
arXiv Detail & Related papers (2025-03-06T14:59:38Z) - Marigold-DC: Zero-Shot Monocular Depth Completion with Guided Diffusion [51.69876947593144]
Existing methods for depth completion operate in tightly constrained settings.<n>Inspired by advances in monocular depth estimation, we reframe depth completion as an image-conditional depth map generation.<n>Marigold-DC builds on a pretrained latent diffusion model for monocular depth estimation and injects the depth observations as test-time guidance.
arXiv Detail & Related papers (2024-12-18T00:06:41Z) - DepthSplat: Connecting Gaussian Splatting and Depth [90.06180236292866]
We present DepthSplat to connect Gaussian splatting and depth estimation.<n>We show that Gaussian splatting can serve as an unsupervised pre-training objective for learning powerful depth models.<n>Our DepthSplat achieves state-of-the-art performance on ScanNet, RealEstate10K and DL3DV datasets.
arXiv Detail & Related papers (2024-10-17T17:59:58Z) - UMono: Physical Model Informed Hybrid CNN-Transformer Framework for Underwater Monocular Depth Estimation [5.596432047035205]
Underwater monocular depth estimation serves as the foundation for tasks such as 3D reconstruction of underwater scenes.
Existing methods fail to consider the unique characteristics of underwater environments.
In this paper, an end-to-end learning framework for underwater monocular depth estimation called UMono is presented.
arXiv Detail & Related papers (2024-07-25T07:52:11Z) - ScaleDepth: Decomposing Metric Depth Estimation into Scale Prediction and Relative Depth Estimation [62.600382533322325]
We propose a novel monocular depth estimation method called ScaleDepth.
Our method decomposes metric depth into scene scale and relative depth, and predicts them through a semantic-aware scale prediction module.
Our method achieves metric depth estimation for both indoor and outdoor scenes in a unified framework.
arXiv Detail & Related papers (2024-07-11T05:11:56Z) - WaterMono: Teacher-Guided Anomaly Masking and Enhancement Boosting for Robust Underwater Self-Supervised Monocular Depth Estimation [4.909989222186828]
We propose WaterMono, a novel framework for depth estimation and image enhancement.
It incorporates the following key measures: (1) We present a Teacher-Guided Anomaly Mask to identify dynamic regions within the images; (2) We employ depth information combined with the Underwater Image Formation Model to generate enhanced images, which in turn contribute to the depth estimation task; and (3) We utilize a rotated distillation strategy to enhance the model's rotational robustness.
arXiv Detail & Related papers (2024-06-19T08:49:45Z) - Self-Supervised Learning based Depth Estimation from Monocular Images [0.0]
The goal of Monocular Depth Estimation is to predict the depth map, given a 2D monocular RGB image as input.
We plan to do intrinsic camera parameters during training and apply weather augmentations to further generalize our model.
arXiv Detail & Related papers (2023-04-14T07:14:08Z) - Monocular Visual-Inertial Depth Estimation [66.71452943981558]
We present a visual-inertial depth estimation pipeline that integrates monocular depth estimation and visual-inertial odometry.
Our approach performs global scale and shift alignment against sparse metric depth, followed by learning-based dense alignment.
We evaluate on the TartanAir and VOID datasets, observing up to 30% reduction in RMSE with dense scale alignment.
arXiv Detail & Related papers (2023-03-21T18:47:34Z) - SelfTune: Metrically Scaled Monocular Depth Estimation through
Self-Supervised Learning [53.78813049373321]
We propose a self-supervised learning method for the pre-trained supervised monocular depth networks to enable metrically scaled depth estimation.
Our approach is useful for various applications such as mobile robot navigation and is applicable to diverse environments.
arXiv Detail & Related papers (2022-03-10T12:28:42Z) - BridgeNet: A Joint Learning Network of Depth Map Super-Resolution and
Monocular Depth Estimation [60.34562823470874]
We propose a joint learning network of depth map super-resolution (DSR) and monocular depth estimation (MDE) without introducing additional supervision labels.
One is the high-frequency attention bridge (HABdg) designed for the feature encoding process, which learns the high-frequency information of the MDE task to guide the DSR task.
The other is the content guidance bridge (CGBdg) designed for the depth map reconstruction process, which provides the content guidance learned from DSR task for MDE task.
arXiv Detail & Related papers (2021-07-27T01:28:23Z) - SAFENet: Self-Supervised Monocular Depth Estimation with Semantic-Aware
Feature Extraction [27.750031877854717]
We propose SAFENet that is designed to leverage semantic information to overcome the limitations of the photometric loss.
Our key idea is to exploit semantic-aware depth features that integrate the semantic and geometric knowledge.
Experiments on KITTI dataset demonstrate that our methods compete or even outperform the state-of-the-art methods.
arXiv Detail & Related papers (2020-10-06T17:22:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.