AI Human Impact: Toward a Model for Ethical Investing in AI-Intensive Companies
- URL: http://arxiv.org/abs/2507.07703v1
- Date: Thu, 10 Jul 2025 12:30:58 GMT
- Title: AI Human Impact: Toward a Model for Ethical Investing in AI-Intensive Companies
- Authors: James Brusseau,
- Abstract summary: An ethical evaluation of AI-intensive companies will allow investors to knowledgeably participate in the decision.<n>The evaluation is built from nine performance indicators that can be analyzed and scored to reflect a technology's human-centering.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Does AI conform to humans, or will we conform to AI? An ethical evaluation of AI-intensive companies will allow investors to knowledgeably participate in the decision. The evaluation is built from nine performance indicators that can be analyzed and scored to reflect a technology's human-centering. The result is objective investment guidance, as well as investors empowered to act in accordance with their own values. Incorporating ethics into financial decisions is a strategy that will be recognized by participants in environmental, social, and governance investing, however, this paper argues that conventional ESG frameworks are inadequate to companies that function with AI at their core. Fully accounting for contemporary big data, predictive analytics, and machine learning requires specialized metrics customized from established AI ethics principles. With these metrics established, the larger goal is a model for humanist investing in AI-intensive companies that is intellectually robust, manageable for analysts, useful for portfolio managers, and credible for investors.
Related papers
- Bridging the Gap: Integrating Ethics and Environmental Sustainability in AI Research and Practice [57.94036023167952]
We argue that the efforts aiming to study AI's ethical ramifications should be made in tandem with those evaluating its impacts on the environment.<n>We propose best practices to better integrate AI ethics and sustainability in AI research and practice.
arXiv Detail & Related papers (2025-04-01T13:53:11Z) - Quantifying A Firm's AI Engagement: Constructing Objective, Data-Driven, AI Stock Indices Using 10-K Filings [0.0]
This paper proposes a new, objective, data-driven approach using natural language processing (NLP) techniques to classify AI stocks.<n>We analyze annual 10-K filings from 3,395 NASDAQ-listed firms between 2011 and 2023.<n>Using these metrics, we construct four AI stock indices-the Equally Weighted AI Index (AII), the Size-Weighted AI Index (SAII), and two Time-Discounted AI Indices (TAII05 and TAII5X)
arXiv Detail & Related papers (2025-01-03T11:27:49Z) - Follow the money: a startup-based measure of AI exposure across occupations, industries and regions [0.0]
Existing measures of AI occupational exposure focus on AI's theoretical potential to substitute or complement human labour on the basis of technical feasibility.<n>We introduce the AI Startup Exposure (AISE) index-a novel metric based on occupational descriptions from O*NET and AI applications developed by startups.<n>Our findings suggest that AI adoption will be gradual and shaped by social factors as much as by the technical feasibility of AI applications.
arXiv Detail & Related papers (2024-12-06T10:25:05Z) - Engineering Trustworthy AI: A Developer Guide for Empirical Risk Minimization [53.80919781981027]
Key requirements for trustworthy AI can be translated into design choices for the components of empirical risk minimization.
We hope to provide actionable guidance for building AI systems that meet emerging standards for trustworthiness of AI.
arXiv Detail & Related papers (2024-10-25T07:53:32Z) - Particip-AI: A Democratic Surveying Framework for Anticipating Future AI Use Cases, Harms and Benefits [54.648819983899614]
General purpose AI seems to have lowered the barriers for the public to use AI and harness its power.
We introduce PARTICIP-AI, a framework for laypeople to speculate and assess AI use cases and their impacts.
arXiv Detail & Related papers (2024-03-21T19:12:37Z) - AI in ESG for Financial Institutions: An Industrial Survey [4.893954917947095]
The paper surveys the industrial landscape to delineate the necessity and impact of AI in bolstering ESG frameworks.
Our survey categorizes AI applications across three main pillars of ESG, illustrating how AI enhances analytical capabilities, risk assessment, customer engagement, reporting accuracy and more.
The paper also addresses the imperative of responsible and sustainable AI, emphasizing the ethical dimensions of AI deployment in ESG-related banking processes.
arXiv Detail & Related papers (2024-02-03T02:14:47Z) - Investigating Responsible AI for Scientific Research: An Empirical Study [4.597781832707524]
The push for Responsible AI (RAI) in such institutions underscores the increasing emphasis on integrating ethical considerations within AI design and development.
This paper aims to assess the awareness and preparedness regarding the ethical risks inherent in AI design and development.
Our results have revealed certain knowledge gaps concerning ethical, responsible, and inclusive AI, with limitations in awareness of the available AI ethics frameworks.
arXiv Detail & Related papers (2023-12-15T06:40:27Z) - Guideline for Trustworthy Artificial Intelligence -- AI Assessment
Catalog [0.0]
It is clear that AI and business models based on it can only reach their full potential if AI applications are developed according to high quality standards.
The issue of the trustworthiness of AI applications is crucial and is the subject of numerous major publications.
This AI assessment catalog addresses exactly this point and is intended for two target groups.
arXiv Detail & Related papers (2023-06-20T08:07:18Z) - An interdisciplinary conceptual study of Artificial Intelligence (AI)
for helping benefit-risk assessment practices: Towards a comprehensive
qualification matrix of AI programs and devices (pre-print 2020) [55.41644538483948]
This paper proposes a comprehensive analysis of existing concepts coming from different disciplines tackling the notion of intelligence.
The aim is to identify shared notions or discrepancies to consider for qualifying AI systems.
arXiv Detail & Related papers (2021-05-07T12:01:31Z) - Qlib: An AI-oriented Quantitative Investment Platform [86.8580406876954]
AI technologies have raised new challenges to the quantitative investment system.
Qlib aims to realize the potential, empower the research, and create the value of AI technologies in quantitative investment.
arXiv Detail & Related papers (2020-09-22T12:57:10Z) - Effect of Confidence and Explanation on Accuracy and Trust Calibration
in AI-Assisted Decision Making [53.62514158534574]
We study whether features that reveal case-specific model information can calibrate trust and improve the joint performance of the human and AI.
We show that confidence score can help calibrate people's trust in an AI model, but trust calibration alone is not sufficient to improve AI-assisted decision making.
arXiv Detail & Related papers (2020-01-07T15:33:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.