Motion-Aware Adaptive Pixel Pruning for Efficient Local Motion Deblurring
- URL: http://arxiv.org/abs/2507.07708v1
- Date: Thu, 10 Jul 2025 12:38:27 GMT
- Title: Motion-Aware Adaptive Pixel Pruning for Efficient Local Motion Deblurring
- Authors: Wei Shang, Dongwei Ren, Wanying Zhang, Pengfei Zhu, Qinghua Hu, Wangmeng Zuo,
- Abstract summary: We propose a trainable mask predictor that identifies blurred regions in the image.<n>We also develop an intra-frame motion analyzer that translates relative pixel displacements into motion trajectories.<n>Our method is trained end-to-end using a combination of reconstruction loss, reblur loss, and mask loss guided by annotated blur masks.
- Score: 87.56382172827526
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Local motion blur in digital images originates from the relative motion between dynamic objects and static imaging systems during exposure. Existing deblurring methods face significant challenges in addressing this problem due to their inefficient allocation of computational resources and inadequate handling of spatially varying blur patterns. To overcome these limitations, we first propose a trainable mask predictor that identifies blurred regions in the image. During training, we employ blur masks to exclude sharp regions. For inference optimization, we implement structural reparameterization by converting $3\times 3$ convolutions to computationally efficient $1\times 1$ convolutions, enabling pixel-level pruning of sharp areas to reduce computation. Second, we develop an intra-frame motion analyzer that translates relative pixel displacements into motion trajectories, establishing adaptive guidance for region-specific blur restoration. Our method is trained end-to-end using a combination of reconstruction loss, reblur loss, and mask loss guided by annotated blur masks. Extensive experiments demonstrate superior performance over state-of-the-art methods on both local and global blur datasets while reducing FLOPs by 49\% compared to SOTA models (e.g., LMD-ViT). The source code is available at https://github.com/shangwei5/M2AENet.
Related papers
- High-Frequency Prior-Driven Adaptive Masking for Accelerating Image Super-Resolution [87.56382172827526]
High-frequency regions are most critical for reconstruction.<n>We propose a training-free adaptive masking module for acceleration.<n>Our method reduces FLOPs by 24--43% for state-of-the-art models.
arXiv Detail & Related papers (2025-05-11T13:18:03Z) - Motion-adaptive Separable Collaborative Filters for Blind Motion Deblurring [71.60457491155451]
Eliminating image blur produced by various kinds of motion has been a challenging problem.
We propose a novel real-world deblurring filtering model called the Motion-adaptive Separable Collaborative Filter.
Our method provides an effective solution for real-world motion blur removal and achieves state-of-the-art performance.
arXiv Detail & Related papers (2024-04-19T19:44:24Z) - Real-World Efficient Blind Motion Deblurring via Blur Pixel Discretization [45.20189929583484]
We decompose the deblurring (regression) task into blur pixel discretization and discrete-to-continuous conversion tasks.
Specifically, we generate the discretized image residual errors by identifying the blur pixels and then transform them to a continuous form.
arXiv Detail & Related papers (2024-04-18T13:22:56Z) - ExBluRF: Efficient Radiance Fields for Extreme Motion Blurred Images [58.24910105459957]
We present ExBluRF, a novel view synthesis method for extreme motion blurred images.
Our approach consists of two main components: 6-DOF camera trajectory-based motion blur formulation and voxel-based radiance fields.
Compared with the existing works, our approach restores much sharper 3D scenes with the order of 10 times less training time and GPU memory consumption.
arXiv Detail & Related papers (2023-09-16T11:17:25Z) - Adaptive Window Pruning for Efficient Local Motion Deblurring [81.35217764881048]
Local motion blur commonly occurs in real-world photography due to the mixing between moving objects and stationary backgrounds during exposure.
Existing image deblurring methods predominantly focus on global deblurring.
This paper aims to adaptively and efficiently restore high-resolution locally blurred images.
arXiv Detail & Related papers (2023-06-25T15:24:00Z) - Deep Dynamic Scene Deblurring from Optical Flow [53.625999196063574]
Deblurring can provide visually more pleasant pictures and make photography more convenient.
It is difficult to model the non-uniform blur mathematically.
We develop a convolutional neural network (CNN) to restore the sharp images from the deblurred features.
arXiv Detail & Related papers (2023-01-18T06:37:21Z) - Single Image Non-uniform Blur Kernel Estimation via Adaptive Basis
Decomposition [1.854931308524932]
We propose a general, non-parametric model for dense non-uniform motion blur estimation.
We show that our method overcomes the limitations of existing non-uniform motion blur estimation.
arXiv Detail & Related papers (2021-02-01T18:02:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.