THUNDER: Tile-level Histopathology image UNDERstanding benchmark
- URL: http://arxiv.org/abs/2507.07860v1
- Date: Thu, 10 Jul 2025 15:41:35 GMT
- Title: THUNDER: Tile-level Histopathology image UNDERstanding benchmark
- Authors: Pierre Marza, Leo Fillioux, Sofiène Boutaj, Kunal Mahatha, Christian Desrosiers, Pablo Piantanida, Jose Dolz, Stergios Christodoulidis, Maria Vakalopoulou,
- Abstract summary: THUNDER is a tile-level benchmark for digital pathology foundation models.<n>In this paper, we provide a comprehensive comparison of 23 foundation models on 16 different datasets.
- Score: 32.185038017473396
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Progress in a research field can be hard to assess, in particular when many concurrent methods are proposed in a short period of time. This is the case in digital pathology, where many foundation models have been released recently to serve as feature extractors for tile-level images, being used in a variety of downstream tasks, both for tile- and slide-level problems. Benchmarking available methods then becomes paramount to get a clearer view of the research landscape. In particular, in critical domains such as healthcare, a benchmark should not only focus on evaluating downstream performance, but also provide insights about the main differences between methods, and importantly, further consider uncertainty and robustness to ensure a reliable usage of proposed models. For these reasons, we introduce THUNDER, a tile-level benchmark for digital pathology foundation models, allowing for efficient comparison of many models on diverse datasets with a series of downstream tasks, studying their feature spaces and assessing the robustness and uncertainty of predictions informed by their embeddings. THUNDER is a fast, easy-to-use, dynamic benchmark that can already support a large variety of state-of-the-art foundation, as well as local user-defined models for direct tile-based comparison. In this paper, we provide a comprehensive comparison of 23 foundation models on 16 different datasets covering diverse tasks, feature analysis, and robustness. The code for THUNDER is publicly available at https://github.com/MICS-Lab/thunder.
Related papers
- On the Robustness of Human-Object Interaction Detection against Distribution Shift [27.40641711088878]
Human-Object Interaction (HOI) detection has seen substantial advances in recent years.<n>Existing works focus on the standard setting with ideal images and natural distribution, far from practical scenarios with inevitable distribution shifts.<n>In this work, we investigate this issue by benchmarking, analyzing, and enhancing the robustness of HOI detection models under various distribution shifts.
arXiv Detail & Related papers (2025-06-22T13:01:34Z) - LiveXiv -- A Multi-Modal Live Benchmark Based on Arxiv Papers Content [62.816876067499415]
We propose LiveXiv: a scalable evolving live benchmark based on scientific ArXiv papers.<n>LiveXiv accesses domain-specific manuscripts at any given timestamp and proposes to automatically generate visual question-answer pairs.<n>We benchmark multiple open and proprietary Large Multi-modal Models (LMMs) on the first version of our benchmark, showing its challenging nature and exposing the models true abilities.
arXiv Detail & Related papers (2024-10-14T17:51:23Z) - Probing Fine-Grained Action Understanding and Cross-View Generalization of Foundation Models [13.972809192907931]
Foundation models (FMs) are large neural networks trained on broad datasets.
Human activity recognition in video has advanced with FMs, driven by competition among different architectures.
This paper empirically evaluates how perspective changes affect different FMs in fine-grained human activity recognition.
arXiv Detail & Related papers (2024-07-22T12:59:57Z) - When is an Embedding Model More Promising than Another? [33.540506562970776]
Embedders play a central role in machine learning, projecting any object into numerical representations that can be leveraged to perform various downstream tasks.
The evaluation of embedding models typically depends on domain-specific empirical approaches.
We present a unified approach to evaluate embedders, drawing upon the concepts of sufficiency and informativeness.
arXiv Detail & Related papers (2024-06-11T18:13:46Z) - On the Out of Distribution Robustness of Foundation Models in Medical
Image Segmentation [47.95611203419802]
Foundations for vision and language, pre-trained on extensive sets of natural image and text data, have emerged as a promising approach.
We compare the generalization performance to unseen domains of various pre-trained models after being fine-tuned on the same in-distribution dataset.
We further developed a new Bayesian uncertainty estimation for frozen models and used them as an indicator to characterize the model's performance on out-of-distribution data.
arXiv Detail & Related papers (2023-11-18T14:52:10Z) - Anchor Points: Benchmarking Models with Much Fewer Examples [88.02417913161356]
In six popular language classification benchmarks, model confidence in the correct class on many pairs of points is strongly correlated across models.
We propose Anchor Point Selection, a technique to select small subsets of datasets that capture model behavior across the entire dataset.
Just several anchor points can be used to estimate model per-class predictions on all other points in a dataset with low mean absolute error.
arXiv Detail & Related papers (2023-09-14T17:45:51Z) - Comparing Foundation Models using Data Kernels [13.099029073152257]
We present a methodology for directly comparing the embedding space geometry of foundation models.
Our methodology is grounded in random graph theory and enables valid hypothesis testing of embedding similarity.
We show how our framework can induce a manifold of models equipped with a distance function that correlates strongly with several downstream metrics.
arXiv Detail & Related papers (2023-05-09T02:01:07Z) - Revisiting the Evaluation of Image Synthesis with GANs [55.72247435112475]
This study presents an empirical investigation into the evaluation of synthesis performance, with generative adversarial networks (GANs) as a representative of generative models.
In particular, we make in-depth analyses of various factors, including how to represent a data point in the representation space, how to calculate a fair distance using selected samples, and how many instances to use from each set.
arXiv Detail & Related papers (2023-04-04T17:54:32Z) - Interpretable Multi-dataset Evaluation for Named Entity Recognition [110.64368106131062]
We present a general methodology for interpretable evaluation for the named entity recognition (NER) task.
The proposed evaluation method enables us to interpret the differences in models and datasets, as well as the interplay between them.
By making our analysis tool available, we make it easy for future researchers to run similar analyses and drive progress in this area.
arXiv Detail & Related papers (2020-11-13T10:53:27Z) - Stance Detection Benchmark: How Robust Is Your Stance Detection? [65.91772010586605]
Stance Detection (StD) aims to detect an author's stance towards a certain topic or claim.
We introduce a StD benchmark that learns from ten StD datasets of various domains in a multi-dataset learning setting.
Within this benchmark setup, we are able to present new state-of-the-art results on five of the datasets.
arXiv Detail & Related papers (2020-01-06T13:37:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.