Automating Expert-Level Medical Reasoning Evaluation of Large Language Models
- URL: http://arxiv.org/abs/2507.07988v1
- Date: Thu, 10 Jul 2025 17:58:26 GMT
- Title: Automating Expert-Level Medical Reasoning Evaluation of Large Language Models
- Authors: Shuang Zhou, Wenya Xie, Jiaxi Li, Zaifu Zhan, Meijia Song, Han Yang, Cheyenna Espinoza, Lindsay Welton, Xinnie Mai, Yanwei Jin, Zidu Xu, Yuen-Hei Chung, Yiyun Xing, Meng-Han Tsai, Emma Schaffer, Yucheng Shi, Ninghao Liu, Zirui Liu, Rui Zhang,
- Abstract summary: We introduce MedThink-Bench, a benchmark for rigorous, explainable, and scalable assessment of large language models' medical reasoning.<n>We also propose LLM-w-Ref, a novel evaluation framework that leverages fine-grained rationales and LLM-as-a-Judge mechanisms.<n>Overall, MedThink-Bench offers a foundational tool for evaluating LLMs' medical reasoning, advancing their safe and responsible deployment in clinical practice.
- Score: 26.702477426812333
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As large language models (LLMs) become increasingly integrated into clinical decision-making, ensuring transparent and trustworthy reasoning is essential. However, existing evaluation strategies of LLMs' medical reasoning capability either suffer from unsatisfactory assessment or poor scalability, and a rigorous benchmark remains lacking. To address this, we introduce MedThink-Bench, a benchmark designed for rigorous, explainable, and scalable assessment of LLMs' medical reasoning. MedThink-Bench comprises 500 challenging questions across ten medical domains, each annotated with expert-crafted step-by-step rationales. Building on this, we propose LLM-w-Ref, a novel evaluation framework that leverages fine-grained rationales and LLM-as-a-Judge mechanisms to assess intermediate reasoning with expert-level fidelity while maintaining scalability. Experiments show that LLM-w-Ref exhibits a strong positive correlation with expert judgments. Benchmarking twelve state-of-the-art LLMs, we find that smaller models (e.g., MedGemma-27B) can surpass larger proprietary counterparts (e.g., OpenAI-o3). Overall, MedThink-Bench offers a foundational tool for evaluating LLMs' medical reasoning, advancing their safe and responsible deployment in clinical practice.
Related papers
- Med-CoDE: Medical Critique based Disagreement Evaluation Framework [72.42301910238861]
The reliability and accuracy of large language models (LLMs) in medical contexts remain critical concerns.<n>Current evaluation methods often lack robustness and fail to provide a comprehensive assessment of LLM performance.<n>We propose Med-CoDE, a specifically designed evaluation framework for medical LLMs to address these challenges.
arXiv Detail & Related papers (2025-04-21T16:51:11Z) - Quantifying the Reasoning Abilities of LLMs on Real-world Clinical Cases [48.87360916431396]
We introduce MedR-Bench, a benchmarking dataset of 1,453 structured patient cases, annotated with reasoning references.<n>We propose a framework encompassing three critical examination recommendation, diagnostic decision-making, and treatment planning, simulating the entire patient care journey.<n>Using this benchmark, we evaluate five state-of-the-art reasoning LLMs, including DeepSeek-R1, OpenAI-o3-mini, and Gemini-2.0-Flash Thinking, etc.
arXiv Detail & Related papers (2025-03-06T18:35:39Z) - Structured Outputs Enable General-Purpose LLMs to be Medical Experts [50.02627258858336]
Large language models (LLMs) often struggle with open-ended medical questions.<n>We propose a novel approach utilizing structured medical reasoning.<n>Our approach achieves the highest Factuality Score of 85.8, surpassing fine-tuned models.
arXiv Detail & Related papers (2025-03-05T05:24:55Z) - Limitations of Large Language Models in Clinical Problem-Solving Arising from Inflexible Reasoning [3.3482359447109866]
Large Language Models (LLMs) have attained human-level accuracy on medical question-answer (QA) benchmarks.<n>Their limitations in navigating open-ended clinical scenarios have recently been shown.<n>We present the medical abstraction and reasoning corpus (M-ARC)<n>We find that LLMs, including current state-of-the-art o1 and Gemini models, perform poorly compared to physicians on M-ARC.
arXiv Detail & Related papers (2025-02-05T18:14:27Z) - MedHallBench: A New Benchmark for Assessing Hallucination in Medical Large Language Models [0.0]
Medical Large Language Models (MLLMs) have demonstrated potential in healthcare applications.<n>Their propensity for hallucinations presents substantial risks to patient care.<n>This paper introduces MedHallBench, a comprehensive benchmark framework for evaluating and mitigating hallucinations in MLLMs.
arXiv Detail & Related papers (2024-12-25T16:51:29Z) - CliMedBench: A Large-Scale Chinese Benchmark for Evaluating Medical Large Language Models in Clinical Scenarios [50.032101237019205]
CliMedBench is a comprehensive benchmark with 14 expert-guided core clinical scenarios.
The reliability of this benchmark has been confirmed in several ways.
arXiv Detail & Related papers (2024-10-04T15:15:36Z) - MedBench: A Comprehensive, Standardized, and Reliable Benchmarking System for Evaluating Chinese Medical Large Language Models [55.215061531495984]
"MedBench" is a comprehensive, standardized, and reliable benchmarking system for Chinese medical LLM.
First, MedBench assembles the largest evaluation dataset (300,901 questions) to cover 43 clinical specialties.
Third, MedBench implements dynamic evaluation mechanisms to prevent shortcut learning and answer remembering.
arXiv Detail & Related papers (2024-06-24T02:25:48Z) - DnA-Eval: Enhancing Large Language Model Evaluation through Decomposition and Aggregation [75.81096662788254]
Large Language Models (LLMs) are scalable and economical evaluators.<n>The question of how reliable these evaluators are has emerged as a crucial research question.<n>We propose Decompose and Aggregate, which breaks down the evaluation process into different stages based on pedagogical practices.
arXiv Detail & Related papers (2024-05-24T08:12:30Z) - A Spectrum Evaluation Benchmark for Medical Multi-Modal Large Language Models [57.88111980149541]
We introduce Asclepius, a novel Med-MLLM benchmark that assesses Med-MLLMs in terms of distinct medical specialties and different diagnostic capacities.<n>Grounded in 3 proposed core principles, Asclepius ensures a comprehensive evaluation by encompassing 15 medical specialties.<n>We also provide an in-depth analysis of 6 Med-MLLMs and compare them with 3 human specialists.
arXiv Detail & Related papers (2024-02-17T08:04:23Z) - An Automatic Evaluation Framework for Multi-turn Medical Consultations
Capabilities of Large Language Models [22.409334091186995]
Large language models (LLMs) often suffer from hallucinations, leading to overly confident but incorrect judgments.
This paper introduces an automated evaluation framework that assesses the practical capabilities of LLMs as virtual doctors during multi-turn consultations.
arXiv Detail & Related papers (2023-09-05T09:24:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.