Assessing the Capabilities and Limitations of FinGPT Model in Financial NLP Applications
- URL: http://arxiv.org/abs/2507.08015v1
- Date: Sun, 06 Jul 2025 20:02:08 GMT
- Title: Assessing the Capabilities and Limitations of FinGPT Model in Financial NLP Applications
- Authors: Prudence Djagba, Chimezie A. Odinakachukwu,
- Abstract summary: This work evaluates FinGPT, a financial domain-specific language model, across six key natural language processing (NLP) tasks.<n>The evaluation uses finance-specific datasets to assess FinGPT's capabilities and limitations in real-world financial applications.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This work evaluates FinGPT, a financial domain-specific language model, across six key natural language processing (NLP) tasks: Sentiment Analysis, Text Classification, Named Entity Recognition, Financial Question Answering, Text Summarization, and Stock Movement Prediction. The evaluation uses finance-specific datasets to assess FinGPT's capabilities and limitations in real-world financial applications. The results show that FinGPT performs strongly in classification tasks such as sentiment analysis and headline categorization, often achieving results comparable to GPT-4. However, its performance is significantly lower in tasks that involve reasoning and generation, such as financial question answering and summarization. Comparisons with GPT-4 and human benchmarks highlight notable performance gaps, particularly in numerical accuracy and complex reasoning. Overall, the findings indicate that while FinGPT is effective for certain structured financial tasks, it is not yet a comprehensive solution. This research provides a useful benchmark for future research and underscores the need for architectural improvements and domain-specific optimization in financial language models.
Related papers
- FinDER: Financial Dataset for Question Answering and Evaluating Retrieval-Augmented Generation [63.55583665003167]
We present FinDER, an expert-generated dataset tailored for Retrieval-Augmented Generation (RAG) in finance.<n>FinDER focuses on annotating search-relevant evidence by domain experts, offering 5,703 query-evidence-answer triplets.<n>By challenging models to retrieve relevant information from large corpora, FinDER offers a more realistic benchmark for evaluating RAG systems.
arXiv Detail & Related papers (2025-04-22T11:30:13Z) - FinTSB: A Comprehensive and Practical Benchmark for Financial Time Series Forecasting [58.70072722290475]
Financial time series (FinTS) record the behavior of human-brain-augmented decision-making.<n>FinTSB is a comprehensive and practical benchmark for financial time series forecasting.
arXiv Detail & Related papers (2025-02-26T05:19:16Z) - FinMTEB: Finance Massive Text Embedding Benchmark [18.990655668481075]
We introduce the Finance Massive Text Embedding Benchmark (FinMTEB), a specialized counterpart to MTEB designed for the financial domain.<n>FinMTEB comprises 64 financial domain-specific embedding datasets across 7 tasks.<n>We show three key findings: (1) performance on general-purpose benchmarks shows limited correlation with financial domain tasks; (2) domain-adapted models consistently outperform their general-purpose counterparts; and (3) surprisingly, a simple Bag-of-Words approach outperforms sophisticated dense embeddings in financial Semantic Textual Similarity tasks.
arXiv Detail & Related papers (2025-02-16T04:23:52Z) - Demystifying Domain-adaptive Post-training for Financial LLMs [79.581577578952]
FINDAP is a systematic and fine-grained investigation into domain adaptive post-training of large language models (LLMs)<n>Our approach consists of four key components: FinCap, FinRec, FinTrain and FinEval.<n>The resulting model, Llama-Fin, achieves state-of-the-art performance across a wide range of financial tasks.
arXiv Detail & Related papers (2025-01-09T04:26:15Z) - Financial Sentiment Analysis on News and Reports Using Large Language Models and FinBERT [0.0]
This paper investigates the application of large language models (LLMs) and FinBERT for financial sentiment analysis.
The study emphasizes the advantages of prompt engineering with zero-shot and few-shot strategy to improve sentiment classification accuracy.
arXiv Detail & Related papers (2024-10-02T19:48:17Z) - FinBen: A Holistic Financial Benchmark for Large Language Models [75.09474986283394]
FinBen is the first extensive open-source evaluation benchmark, including 36 datasets spanning 24 financial tasks.
FinBen offers several key innovations: a broader range of tasks and datasets, the first evaluation of stock trading, novel agent and Retrieval-Augmented Generation (RAG) evaluation, and three novel open-source evaluation datasets for text summarization, question answering, and stock trading.
arXiv Detail & Related papers (2024-02-20T02:16:16Z) - Can GPT models be Financial Analysts? An Evaluation of ChatGPT and GPT-4
on mock CFA Exams [26.318005637849915]
This study aims at assessing the financial reasoning capabilities of Large Language Models (LLMs)
We leverage mock exam questions of the Chartered Financial Analyst (CFA) Program to conduct a comprehensive evaluation of ChatGPT and GPT-4.
We present an in-depth analysis of the models' performance and limitations, and estimate whether they would have a chance at passing the CFA exams.
arXiv Detail & Related papers (2023-10-12T19:28:57Z) - GPT-3 Models are Few-Shot Financial Reasoners [1.0742675209112622]
It is unknown how well pre-trained language models can reason in the financial domain.
We run several experiments with GPT-3 and find that a separate retrieval model and logic engine continue to be essential components.
With this understanding, our refined prompt-engineering approach on GPT-3 achieves near SOTA accuracy without any fine-tuning.
arXiv Detail & Related papers (2023-07-25T16:21:07Z) - PIXIU: A Large Language Model, Instruction Data and Evaluation Benchmark
for Finance [63.51545277822702]
PIXIU is a comprehensive framework including the first financial large language model (LLMs) based on fine-tuning LLaMA with instruction data.
We propose FinMA by fine-tuning LLaMA with the constructed dataset to be able to follow instructions for various financial tasks.
We conduct a detailed analysis of FinMA and several existing LLMs, uncovering their strengths and weaknesses in handling critical financial tasks.
arXiv Detail & Related papers (2023-06-08T14:20:29Z) - Are ChatGPT and GPT-4 General-Purpose Solvers for Financial Text
Analytics? A Study on Several Typical Tasks [36.84636748560657]
Large language models such as ChatGPT and GPT-4 have shown exceptional capabilities of generalist models.
How effective are such models in the financial domain?
arXiv Detail & Related papers (2023-05-10T03:13:54Z) - FinQA: A Dataset of Numerical Reasoning over Financial Data [52.7249610894623]
We focus on answering deep questions over financial data, aiming to automate the analysis of a large corpus of financial documents.
We propose a new large-scale dataset, FinQA, with Question-Answering pairs over Financial reports, written by financial experts.
The results demonstrate that popular, large, pre-trained models fall far short of expert humans in acquiring finance knowledge.
arXiv Detail & Related papers (2021-09-01T00:08:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.