Integrating External Tools with Large Language Models to Improve Accuracy
- URL: http://arxiv.org/abs/2507.08034v1
- Date: Wed, 09 Jul 2025 04:09:59 GMT
- Title: Integrating External Tools with Large Language Models to Improve Accuracy
- Authors: Nripesh Niketan, Hadj Batatia,
- Abstract summary: It is well-known that without relevant contextual information, large language models (LLMs) can provide poor quality responses or tend to hallucinate.<n>Several initiatives have proposed integrating LLMs with external tools to provide them with up-to-date data to improve accuracy.<n>In this paper, we propose a framework to integrate external tools to enhance the capabilities of LLMs in answering queries in educational settings.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper deals with improving querying large language models (LLMs). It is well-known that without relevant contextual information, LLMs can provide poor quality responses or tend to hallucinate. Several initiatives have proposed integrating LLMs with external tools to provide them with up-to-date data to improve accuracy. In this paper, we propose a framework to integrate external tools to enhance the capabilities of LLMs in answering queries in educational settings. Precisely, we develop a framework that allows accessing external APIs to request additional relevant information. Integrated tools can also provide computational capabilities such as calculators or calendars. The proposed framework has been evaluated using datasets from the Multi-Modal Language Understanding (MMLU) collection. The data consists of questions on mathematical and scientific reasoning. Results compared to state-of-the-art language models show that the proposed approach significantly improves performance. Our Athena framework achieves 83% accuracy in mathematical reasoning and 88% in scientific reasoning, substantially outperforming all tested models including GPT-4o, LLaMA-Large, Mistral-Large, Phi-Large, and GPT-3.5, with the best baseline model (LLaMA-Large) achieving only 67% and 79% respectively. These promising results open the way to creating complex computing ecosystems around LLMs to make their use more natural to support various tasks and activities.
Related papers
- MAmmoTH-VL: Eliciting Multimodal Reasoning with Instruction Tuning at Scale [66.73529246309033]
multimodal large language models (MLLMs) have shown significant potential in a broad range of multimodal tasks.<n>Existing instruction-tuning datasets only provide phrase-level answers without any intermediate rationales.<n>We introduce a scalable and cost-effective method to construct a large-scale multimodal instruction-tuning dataset with rich intermediate rationales.
arXiv Detail & Related papers (2024-12-06T18:14:24Z) - Harnessing LLMs for API Interactions: A Framework for Classification and Synthetic Data Generation [0.0]
We propose a novel system that integrates Large Language Models (LLMs) for both classifying natural language inputs into corresponding API calls.
Our system allows users to invoke complex software functionalities through simple inputs, improving interaction efficiency and lowering the barrier to software utilization.
arXiv Detail & Related papers (2024-09-18T04:56:52Z) - Learning to Plan for Retrieval-Augmented Large Language Models from Knowledge Graphs [59.76268575344119]
We introduce a novel framework for enhancing large language models' (LLMs) planning capabilities by using planning data derived from knowledge graphs (KGs)
LLMs fine-tuned with KG data have improved planning capabilities, better equipping them to handle complex QA tasks that involve retrieval.
arXiv Detail & Related papers (2024-06-20T13:07:38Z) - AvaTaR: Optimizing LLM Agents for Tool Usage via Contrastive Reasoning [93.96463520716759]
Large language model (LLM) agents have demonstrated impressive capabilities in utilizing external tools and knowledge to boost accuracy and hallucinations.
Here, we introduce AvaTaR, a novel and automated framework that optimize an LLM agent to effectively leverage provided tools, improving performance on a given task.
arXiv Detail & Related papers (2024-06-17T04:20:02Z) - MindStar: Enhancing Math Reasoning in Pre-trained LLMs at Inference Time [51.5039731721706]
MindStar is a purely inference-based searching method for large language models.
It formulates reasoning tasks as searching problems and proposes two search ideas to identify the optimal reasoning paths.
It significantly enhances the reasoning abilities of open-source models, such as Llama-2-13B and Mistral-7B, and achieves comparable performance to GPT-3.5 and Grok-1.
arXiv Detail & Related papers (2024-05-25T15:07:33Z) - Tool-Augmented Reward Modeling [58.381678612409]
We propose a tool-augmented preference modeling approach, named Themis, to address limitations by empowering RMs with access to external environments.
Our study delves into the integration of external tools into RMs, enabling them to interact with diverse external sources.
In human evaluations, RLHF trained with Themis attains an average win rate of 32% when compared to baselines.
arXiv Detail & Related papers (2023-10-02T09:47:40Z) - ToolQA: A Dataset for LLM Question Answering with External Tools [14.408707186450899]
Large Language Models (LLMs) have demonstrated impressive performance in various NLP tasks.
They still suffer from challenges such as hallucination and weak numerical reasoning.
To overcome these challenges, external tools can be used to enhance LLMs' question-answering abilities.
arXiv Detail & Related papers (2023-06-23T05:43:28Z) - Generative Multimodal Entity Linking [24.322540112710918]
Multimodal Entity Linking (MEL) is the task of mapping mentions with multimodal contexts to referent entities from a knowledge base.
Existing MEL methods mainly focus on designing complex multimodal interaction mechanisms and require fine-tuning all model parameters.
We propose GEMEL, a Generative Multimodal Entity Linking framework based on Large Language Models (LLMs)
Our framework is compatible with any off-the-shelf language model, paving the way towards an efficient and general solution.
arXiv Detail & Related papers (2023-06-22T07:57:19Z) - LAMM: Language-Assisted Multi-Modal Instruction-Tuning Dataset,
Framework, and Benchmark [81.42376626294812]
We present Language-Assisted Multi-Modal instruction tuning dataset, framework, and benchmark.
Our aim is to establish LAMM as a growing ecosystem for training and evaluating MLLMs.
We present a comprehensive dataset and benchmark, which cover a wide range of vision tasks for 2D and 3D vision.
arXiv Detail & Related papers (2023-06-11T14:01:17Z) - ReWOO: Decoupling Reasoning from Observations for Efficient Augmented
Language Models [32.95155349925248]
We propose a modular paradigm ReWOO that detaches the reasoning process from external observations, thus significantly reducing token consumption.
We show that ReWOO achieves 5x token efficiency and 4% accuracy improvement on HotpotQA, a multi-step reasoning benchmark.
Our illustrative work offloads reasoning ability from 175B GPT3.5 into 7B LLaMA, demonstrating the significant potential for truly efficient and scalable ALM systems.
arXiv Detail & Related papers (2023-05-23T00:16:48Z) - API-Bank: A Comprehensive Benchmark for Tool-Augmented LLMs [84.45284695156771]
API-Bank is a groundbreaking benchmark for tool-augmented Large Language Models.
We develop a run evaluation system consisting of 73 API tools.
We construct a comprehensive training set containing 1,888 tool-use dialogues from 2,138 APIs spanning 1,000 distinct domains.
arXiv Detail & Related papers (2023-04-14T14:05:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.