HNOSeg-XS: Extremely Small Hartley Neural Operator for Efficient and Resolution-Robust 3D Image Segmentation
- URL: http://arxiv.org/abs/2507.08205v1
- Date: Thu, 10 Jul 2025 22:33:19 GMT
- Title: HNOSeg-XS: Extremely Small Hartley Neural Operator for Efficient and Resolution-Robust 3D Image Segmentation
- Authors: Ken C. L. Wong, Hongzhi Wang, Tanveer Syeda-Mahmood,
- Abstract summary: We propose a resolution-robust HNOSeg-XS architecture for medical image segmentation.<n>It is resolution robust, fast, memory efficient, and extremely parameter efficient.<n>It was tested on the BraTS'23, KiTS'23, and MVSeg'23 datasets with a Tesla V100 GPU.
- Score: 3.990336239705776
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In medical image segmentation, convolutional neural networks (CNNs) and transformers are dominant. For CNNs, given the local receptive fields of convolutional layers, long-range spatial correlations are captured through consecutive convolutions and pooling. However, as the computational cost and memory footprint can be prohibitively large, 3D models can only afford fewer layers than 2D models with reduced receptive fields and abstract levels. For transformers, although long-range correlations can be captured by multi-head attention, its quadratic complexity with respect to input size is computationally demanding. Therefore, either model may require input size reduction to allow more filters and layers for better segmentation. Nevertheless, given their discrete nature, models trained with patch-wise training or image downsampling may produce suboptimal results when applied on higher resolutions. To address this issue, here we propose the resolution-robust HNOSeg-XS architecture. We model image segmentation by learnable partial differential equations through the Fourier neural operator which has the zero-shot super-resolution property. By replacing the Fourier transform by the Hartley transform and reformulating the problem in the frequency domain, we created the HNOSeg-XS model, which is resolution robust, fast, memory efficient, and extremely parameter efficient. When tested on the BraTS'23, KiTS'23, and MVSeg'23 datasets with a Tesla V100 GPU, HNOSeg-XS showed its superior resolution robustness with fewer than 34.7k model parameters. It also achieved the overall best inference time (< 0.24 s) and memory efficiency (< 1.8 GiB) compared to the tested CNN and transformer models.
Related papers
- FlexGS: Train Once, Deploy Everywhere with Many-in-One Flexible 3D Gaussian Splatting [57.97160965244424]
3D Gaussian splatting (3DGS) has enabled various applications in 3D scene representation and novel view synthesis.<n>Previous approaches have focused on pruning less important Gaussians, effectively compressing 3DGS.<n>We present an elastic inference method for 3DGS, achieving substantial rendering performance without additional fine-tuning.
arXiv Detail & Related papers (2025-06-04T17:17:57Z) - FNOSeg3D: Resolution-Robust 3D Image Segmentation with Fourier Neural
Operator [4.48473804240016]
We introduce FNOSeg3D, a 3D segmentation model robust to training image resolution based on the Fourier neural operator (FNO)
When tested on the BraTS'19 dataset, it achieved superior robustness to training image resolution than other tested models with less than 1% of their model parameters.
arXiv Detail & Related papers (2023-10-05T19:58:36Z) - HartleyMHA: Self-Attention in Frequency Domain for Resolution-Robust and
Parameter-Efficient 3D Image Segmentation [4.48473804240016]
We introduce the HartleyMHA model which is robust to training image resolution with efficient self-attention.
We modify the FNO by using the Hartley transform with shared parameters to reduce the model size by orders of magnitude.
When tested on the BraTS'19 dataset, it achieved superior robustness to training image resolution than other tested models with less than 1% of their model parameters.
arXiv Detail & Related papers (2023-10-05T18:44:41Z) - Towards Optimal Patch Size in Vision Transformers for Tumor Segmentation [2.4540404783565433]
Detection of tumors in metastatic colorectal cancer (mCRC) plays an essential role in the early diagnosis and treatment of liver cancer.
Deep learning models backboned by fully convolutional neural networks (FCNNs) have become the dominant model for segmenting 3D computerized tomography (CT) scans.
Vision transformers have been introduced to solve FCNN's locality of receptive fields.
This paper proposes a technique to select the vision transformer's optimal input multi-resolution image patch size based on the average volume size of metastasis lesions.
arXiv Detail & Related papers (2023-08-31T09:57:27Z) - SqueezeLLM: Dense-and-Sparse Quantization [80.32162537942138]
Main bottleneck for generative inference with LLMs is memory bandwidth, rather than compute, for single batch inference.
We introduce SqueezeLLM, a post-training quantization framework that enables lossless compression to ultra-low precisions of up to 3-bit.
Our framework incorporates two novel ideas: (i) sensitivity-based non-uniform quantization, which searches for the optimal bit precision assignment based on second-order information; and (ii) the Dense-and-Sparse decomposition that stores outliers and sensitive weight values in an efficient sparse format.
arXiv Detail & Related papers (2023-06-13T08:57:54Z) - MISSU: 3D Medical Image Segmentation via Self-distilling TransUNet [55.16833099336073]
We propose to self-distill a Transformer-based UNet for medical image segmentation.
It simultaneously learns global semantic information and local spatial-detailed features.
Our MISSU achieves the best performance over previous state-of-the-art methods.
arXiv Detail & Related papers (2022-06-02T07:38:53Z) - PnP-DETR: Towards Efficient Visual Analysis with Transformers [146.55679348493587]
Recently, DETR pioneered the solution vision tasks with transformers, it directly translates the image feature map into the object result.
Recent transformer-based image recognition model andTT show consistent efficiency gain.
arXiv Detail & Related papers (2021-09-15T01:10:30Z) - Global Filter Networks for Image Classification [90.81352483076323]
We present a conceptually simple yet computationally efficient architecture that learns long-term spatial dependencies in the frequency domain with log-linear complexity.
Our results demonstrate that GFNet can be a very competitive alternative to transformer-style models and CNNs in efficiency, generalization ability and robustness.
arXiv Detail & Related papers (2021-07-01T17:58:16Z) - CoTr: Efficiently Bridging CNN and Transformer for 3D Medical Image
Segmentation [95.51455777713092]
Convolutional neural networks (CNNs) have been the de facto standard for nowadays 3D medical image segmentation.
We propose a novel framework that efficiently bridges a bf Convolutional neural network and a bf Transformer bf (CoTr) for accurate 3D medical image segmentation.
arXiv Detail & Related papers (2021-03-04T13:34:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.