Transfer Learning and Mixup for Fine-Grained Few-Shot Fungi Classification
- URL: http://arxiv.org/abs/2507.08248v1
- Date: Fri, 11 Jul 2025 01:21:21 GMT
- Title: Transfer Learning and Mixup for Fine-Grained Few-Shot Fungi Classification
- Authors: Jason Kahei Tam, Murilo Gustineli, Anthony Miyaguchi,
- Abstract summary: This paper presents our approach for the FungiCLEF 2025 competition.<n>It focuses on few-shot fine-grained visual categorization using the FungiTastic Few-Shot dataset.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accurate identification of fungi species presents a unique challenge in computer vision due to fine-grained inter-species variation and high intra-species variation. This paper presents our approach for the FungiCLEF 2025 competition, which focuses on few-shot fine-grained visual categorization (FGVC) using the FungiTastic Few-Shot dataset. Our team (DS@GT) experimented with multiple vision transformer models, data augmentation, weighted sampling, and incorporating textual information. We also explored generative AI models for zero-shot classification using structured prompting but found them to significantly underperform relative to vision-based models. Our final model outperformed both competition baselines and highlighted the effectiveness of domain specific pretraining and balanced sampling strategies. Our approach ranked 35/74 on the private test set in post-completion evaluation, this suggests additional work can be done on metadata selection and domain-adapted multi-modal learning. Our code is available at https://github.com/dsgt-arc/fungiclef-2025.
Related papers
- Fine-Grained Classification for Poisonous Fungi Identification with Transfer Learning [0.0]
FungiCLEF 2024 addresses the fine-grained visual categorization (FGVC) of fungi species.
Our approach achieved the best Track 3 score (0.345), accuracy (78.4%) and macro-F1 (0.577) on the private test set in post competition evaluation.
arXiv Detail & Related papers (2024-07-10T09:24:50Z) - Additional Look into GAN-based Augmentation for Deep Learning COVID-19
Image Classification [57.1795052451257]
We study the dependence of the GAN-based augmentation performance on dataset size with a focus on small samples.
We train StyleGAN2-ADA with both sets and then, after validating the quality of generated images, we use trained GANs as one of the augmentations approaches in multi-class classification problems.
The GAN-based augmentation approach is found to be comparable with classical augmentation in the case of medium and large datasets but underperforms in the case of smaller datasets.
arXiv Detail & Related papers (2024-01-26T08:28:13Z) - Concept Drift and Long-Tailed Distribution in Fine-Grained Visual Categorization: Benchmark and Method [84.68818879525568]
We present a Concept Drift and Long-Tailed Distribution dataset.
The characteristics of instances tend to vary with time and exhibit a long-tailed distribution.
We propose a feature recombination framework to address the learning challenges associated with CDLT.
arXiv Detail & Related papers (2023-06-04T12:42:45Z) - Self-Evolution Learning for Mixup: Enhance Data Augmentation on Few-Shot
Text Classification Tasks [75.42002070547267]
We propose a self evolution learning (SE) based mixup approach for data augmentation in text classification.
We introduce a novel instance specific label smoothing approach, which linearly interpolates the model's output and one hot labels of the original samples to generate new soft for label mixing up.
arXiv Detail & Related papers (2023-05-22T23:43:23Z) - On the Trade-off of Intra-/Inter-class Diversity for Supervised
Pre-training [72.8087629914444]
We study the impact of the trade-off between the intra-class diversity (the number of samples per class) and the inter-class diversity (the number of classes) of a supervised pre-training dataset.
With the size of the pre-training dataset fixed, the best downstream performance comes with a balance on the intra-/inter-class diversity.
arXiv Detail & Related papers (2023-05-20T16:23:50Z) - Guiding Generative Language Models for Data Augmentation in Few-Shot
Text Classification [59.698811329287174]
We leverage GPT-2 for generating artificial training instances in order to improve classification performance.
Our results show that fine-tuning GPT-2 in a handful of label instances leads to consistent classification improvements.
arXiv Detail & Related papers (2021-11-17T12:10:03Z) - Towards Fine-grained Image Classification with Generative Adversarial
Networks and Facial Landmark Detection [0.0]
We use GAN-based data augmentation to generate extra dataset instances.
We validated our work by evaluating the accuracy of fine-grained image classification on the recent Vision Transformer (ViT) Model.
arXiv Detail & Related papers (2021-08-28T06:32:42Z) - Exploring Vision Transformers for Fine-grained Classification [0.0]
We propose a multi-stage ViT framework for fine-grained image classification tasks, which localizes the informative image regions without requiring architectural changes.
We demonstrate the value of our approach by experimenting with four popular fine-grained benchmarks: CUB-200-2011, Stanford Cars, Stanford Dogs, and FGVC7 Plant Pathology.
arXiv Detail & Related papers (2021-06-19T23:57:31Z) - No Fear of Heterogeneity: Classifier Calibration for Federated Learning
with Non-IID Data [78.69828864672978]
A central challenge in training classification models in the real-world federated system is learning with non-IID data.
We propose a novel and simple algorithm called Virtual Representations (CCVR), which adjusts the classifier using virtual representations sampled from an approximated ssian mixture model.
Experimental results demonstrate that CCVR state-of-the-art performance on popular federated learning benchmarks including CIFAR-10, CIFAR-100, and CINIC-10.
arXiv Detail & Related papers (2021-06-09T12:02:29Z) - Domain Adaptive Transfer Learning on Visual Attention Aware Data
Augmentation for Fine-grained Visual Categorization [3.5788754401889014]
We perform domain adaptive knowledge transfer via fine-tuning on our base network model.
We show competitive improvement on accuracies by using attention-aware data augmentation techniques.
Our method achieves state-of-the-art results in multiple fine-grained classification datasets.
arXiv Detail & Related papers (2020-10-06T22:47:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.