Portable Biomechanics Laboratory: Clinically Accessible Movement Analysis from a Handheld Smartphone
- URL: http://arxiv.org/abs/2507.08268v1
- Date: Fri, 11 Jul 2025 02:29:26 GMT
- Title: Portable Biomechanics Laboratory: Clinically Accessible Movement Analysis from a Handheld Smartphone
- Authors: J. D. Peiffer, Kunal Shah, Irina Djuraskovic, Shawana Anarwala, Kayan Abdou, Rujvee Patel, Prakash Jayabalan, Brenton Pennicooke, R. James Cotton,
- Abstract summary: The way a person moves is a direct reflection of their neurological and musculoskeletal health, yet it remains one of the most underutilized vital signs in clinical practice.<n>We present our Portable Biomechanics Laboratory (PBL), which includes a secure, cloud-enabled smartphone app for data collection and a novel algorithm for fitting biomechanical models to this data.
- Score: 1.3060095849496556
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The way a person moves is a direct reflection of their neurological and musculoskeletal health, yet it remains one of the most underutilized vital signs in clinical practice. Although clinicians visually observe movement impairments, they lack accessible and validated methods to objectively measure movement in routine care. This gap prevents wider use of biomechanical measurements in practice, which could enable more sensitive outcome measures or earlier identification of impairment. We present our Portable Biomechanics Laboratory (PBL), which includes a secure, cloud-enabled smartphone app for data collection and a novel algorithm for fitting biomechanical models to this data. We extensively validated PBL's biomechanical measures using a large, clinically representative dataset. Next, we tested the usability and utility of our system in neurosurgery and sports medicine clinics. We found joint angle errors within 3 degrees across participants with neurological injury, lower-limb prosthesis users, pediatric inpatients, and controls. In addition to being easy to use, gait metrics computed from the PBL showed high reliability and were sensitive to clinical differences. For example, in individuals undergoing decompression surgery for cervical myelopathy, the mJOA score is a common patient-reported outcome measure; we found that PBL gait metrics correlated with mJOA scores and demonstrated greater responsiveness to surgical intervention than the patient-reported outcomes. These findings support the use of handheld smartphone video as a scalable, low-burden tool for capturing clinically meaningful biomechanical data, offering a promising path toward accessible monitoring of mobility impairments. We release the first clinically validated method for measuring whole-body kinematics from handheld smartphone video at https://intelligentsensingandrehabilitation.github.io/MonocularBiomechanics/ .
Related papers
- AI on the Pulse: Real-Time Health Anomaly Detection with Wearable and Ambient Intelligence [4.494833548150712]
We introduce AI on the Pulse, a real-world-ready anomaly detection system that continuously monitors patients.<n>Powered by UniTS, a state-of-the-art (SoTA) universal time-series model, our framework autonomously learns each patient's unique physiological and behavioral patterns.
arXiv Detail & Related papers (2025-08-05T13:24:15Z) - Validation of Human Pose Estimation and Human Mesh Recovery for Extracting Clinically Relevant Motion Data from Videos [79.62407455005561]
Marker-less motion capture using human pose estimation produces results in-line with the results of both the IMU and MoCap kinematics.<n>While there is still room for improvement when it comes to the quality of the data produced, we believe that this compromise is within the room of error.
arXiv Detail & Related papers (2025-03-18T22:18:33Z) - Detecting Activities of Daily Living in Egocentric Video to Contextualize Hand Use at Home in Outpatient Neurorehabilitation Settings [2.9158689853305693]
We show that an object-centric approach, focusing on what objects patients interact with rather than how they move, can effectively recognize Activities of Daily Living (ADL) in real-world rehabilitation settings.<n>We evaluated our models on a complex dataset collected in the wild comprising 2261 minutes of egocentric video from 16 participants with impaired hand function.
arXiv Detail & Related papers (2024-12-14T14:38:27Z) - Training-free image style alignment for self-adapting domain shift on
handheld ultrasound devices [54.476120039032594]
We propose the Training-free Image Style Alignment (TISA) framework to align the style of handheld device data to those of standard devices.
TISA can directly infer handheld device images without extra training and is suited for clinical applications.
arXiv Detail & Related papers (2024-02-17T07:15:23Z) - A comparative study on wearables and single-camera video for upper-limb
out-of-thelab activity recognition with different deep learning architectures [0.0]
High-end Inertial Measurement Units (IMU) have become increasingly popular for assessing human physical activity in clinical and research settings.
To increase the feasibility of patient tracking in out-of-the-lab settings, it is necessary to use a reduced number of devices for movement acquisition.
The development of machine learning systems able to recognize and digest clinically relevant data in-the-wild is needed.
arXiv Detail & Related papers (2024-02-04T19:45:59Z) - A marker-less human motion analysis system for motion-based biomarker
discovery in knee disorders [60.99112047564336]
The NHS has been having increased difficulty seeing all low-risk patients, this includes but not limited to suspected osteoarthritis (OA) patients.
We propose a novel method of automated biomarker identification for diagnosis of knee disorders and the monitoring of treatment progression.
arXiv Detail & Related papers (2023-04-26T16:47:42Z) - Pain level and pain-related behaviour classification using GRU-based
sparsely-connected RNNs [61.080598804629375]
People with chronic pain unconsciously adapt specific body movements to protect themselves from injury or additional pain.
Because there is no dedicated benchmark database to analyse this correlation, we considered one of the specific circumstances that potentially influence a person's biometrics during daily activities.
We proposed a sparsely-connected recurrent neural networks (s-RNNs) ensemble with the gated recurrent unit (GRU) that incorporates multiple autoencoders.
We conducted several experiments which indicate that the proposed method outperforms the state-of-the-art approaches in classifying both pain level and pain-related behaviour.
arXiv Detail & Related papers (2022-12-20T12:56:28Z) - Reducing a complex two-sided smartwatch examination for Parkinson's
Disease to an efficient one-sided examination preserving machine learning
accuracy [63.20765930558542]
We have recorded participants performing technology-based assessments in a prospective study to research Parkinson's Disease (PD)
This study provided the largest PD sample size of two-hand synchronous smartwatch measurements.
arXiv Detail & Related papers (2022-05-11T09:12:59Z) - Continuous Decoding of Daily-Life Hand Movements from Forearm Muscle
Activity for Enhanced Myoelectric Control of Hand Prostheses [78.120734120667]
We introduce a novel method, based on a long short-term memory (LSTM) network, to continuously map forearm EMG activity onto hand kinematics.
Ours is the first reported work on the prediction of hand kinematics that uses this challenging dataset.
Our results suggest that the presented method is suitable for the generation of control signals for the independent and proportional actuation of the multiple DOFs of state-of-the-art hand prostheses.
arXiv Detail & Related papers (2021-04-29T00:11:32Z) - Learning Generalizable Physiological Representations from Large-scale
Wearable Data [12.863826659440026]
We present a novel self-supervised representation learning method using activity and heart rate (HR) signals without semantic labels.
We show that the resulting embeddings can generalize in various downstream tasks through transfer learning with linear classifiers.
Overall, we propose the first multimodal self-supervised method for behavioral and physiological data with implications for large-scale health and lifestyle monitoring.
arXiv Detail & Related papers (2020-11-09T17:56:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.