From Language to Logic: A Bi-Level Framework for Structured Reasoning
- URL: http://arxiv.org/abs/2507.08501v1
- Date: Fri, 11 Jul 2025 11:24:09 GMT
- Title: From Language to Logic: A Bi-Level Framework for Structured Reasoning
- Authors: Keying Yang, Hao Wang, Kai Yang,
- Abstract summary: Structured reasoning over natural language inputs remains a core challenge in artificial intelligence.<n>We propose a novel framework that maps language to logic through a two-stage process: high-level task abstraction and low-level logic generation.<n>Our approach significantly outperforms existing baselines in accuracy, with accuracy gains reaching as high as 40%.
- Score: 6.075080928704587
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Structured reasoning over natural language inputs remains a core challenge in artificial intelligence, as it requires bridging the gap between unstructured linguistic expressions and formal logical representations. In this paper, we propose a novel \textbf{bi-level framework} that maps language to logic through a two-stage process: high-level task abstraction and low-level logic generation. At the upper level, a large language model (LLM) parses natural language queries into intermediate structured representations specifying the problem type, objectives, decision variables, and symbolic constraints. At the lower level, the LLM uses these representations to generate symbolic workflows or executable reasoning programs for accurate and interpretable decision making. The framework supports modular reasoning, enforces explicit constraints, and generalizes across domains such as mathematical problem solving, question answering, and logical inference. We further optimize the framework with an end-to-end {bi-level} optimization approach that jointly refines both the high-level abstraction and low-level logic generation stages. Experiments on multiple realistic reasoning benchmarks demonstrate that our approach significantly outperforms existing baselines in accuracy, with accuracy gains reaching as high as 40\%. Moreover, the bi-level design enhances transparency and error traceability, offering a promising step toward trustworthy and systematic reasoning with LLMs.
Related papers
- Speaking in Words, Thinking in Logic: A Dual-Process Framework in QA Systems [0.602276990341246]
Text-JEPA is a framework for converting natural language into first-order logic (NL2FOL)<n>We show that Text-JEPA achieves competitive performance with significantly lower computational overhead compared to larger LLM-based systems.<n>Our findings highlight the potential of structured, interpretable reasoning frameworks for building efficient and explainable QA systems in specialized domains.
arXiv Detail & Related papers (2025-07-28T03:00:35Z) - Do LLMs Dream of Discrete Algorithms? [0.7646713951724011]
Large Language Models (LLMs) have rapidly transformed the landscape of artificial intelligence.<n>Their reliance on probabilistic inference limits their effectiveness in domains requiring strict logical reasoning.<n>This paper proposes a neurosymbolic approach that augments LLMs with logic-based reasoning modules.
arXiv Detail & Related papers (2025-06-29T22:03:01Z) - Dissecting Logical Reasoning in LLMs: A Fine-Grained Evaluation and Supervision Study [34.29839553042609]
We propose FineLogic, a fine-grained evaluation framework that assesses logical reasoning across three dimensions.<n>We conduct a study on the effects of supervision format during fine-tuning.<n>Our findings reveal that natural language supervision yields strong generalization even on out-of-distribution and long-context tasks.
arXiv Detail & Related papers (2025-06-05T09:34:12Z) - Learning to Reason via Mixture-of-Thought for Logical Reasoning [56.24256916896427]
Mixture-of-Thought (MoT) is a framework that enables LLMs to reason across three complementary modalities: natural language, code, and truth-table.<n>MoT adopts a two-phase design: (1) self-evolving MoT training, which jointly learns from filtered, self-generated rationales across modalities; and (2) MoT inference, which fully leverages the synergy of three modalities to produce better predictions.
arXiv Detail & Related papers (2025-05-21T17:59:54Z) - Reasoning-as-Logic-Units: Scaling Test-Time Reasoning in Large Language Models Through Logic Unit Alignment [21.12989936864145]
Chain-of-Thought (CoT) prompting has shown promise in enhancing the reasoning capabilities of large language models (LLMs)<n>We propose Reasoning-as-Logic-Units (RaLU), which constructs a more reliable reasoning path by aligning logical units between the generated program and their corresponding NL descriptions.
arXiv Detail & Related papers (2025-02-05T08:23:18Z) - Proof of Thought : Neurosymbolic Program Synthesis allows Robust and Interpretable Reasoning [1.3003982724617653]
Large Language Models (LLMs) have revolutionized natural language processing, yet they struggle with inconsistent reasoning.
This research introduces Proof of Thought, a framework that enhances the reliability and transparency of LLM outputs.
Key contributions include a robust type system with sort management for enhanced logical integrity, explicit representation of rules for clear distinction between factual and inferential knowledge.
arXiv Detail & Related papers (2024-09-25T18:35:45Z) - DECIDER: A Dual-System Rule-Controllable Decoding Framework for Language Generation [57.07295906718989]
Constrained decoding approaches aim to control the meaning or style of text generated by pre-trained large language (Ms also PLMs) for various tasks at inference time.<n>These methods often guide plausible continuations by greedily and explicitly selecting targets.<n>Inspired by cognitive dual-process theory, we propose a novel decoding framework DECIDER.
arXiv Detail & Related papers (2024-03-04T11:49:08Z) - Language Models can be Logical Solvers [99.40649402395725]
We introduce LoGiPT, a novel language model that directly emulates the reasoning processes of logical solvers.
LoGiPT is fine-tuned on a newly constructed instruction-tuning dataset derived from revealing and refining the invisible reasoning process of deductive solvers.
arXiv Detail & Related papers (2023-11-10T16:23:50Z) - Towards LogiGLUE: A Brief Survey and A Benchmark for Analyzing Logical Reasoning Capabilities of Language Models [56.34029644009297]
Large language models (LLMs) have demonstrated the ability to overcome various limitations of formal Knowledge Representation (KR) systems.
LLMs excel most in abductive reasoning, followed by deductive reasoning, while they are least effective at inductive reasoning.
We study single-task training, multi-task training, and "chain-of-thought" knowledge distillation fine-tuning technique to assess the performance of model.
arXiv Detail & Related papers (2023-10-02T01:00:50Z) - When Do Program-of-Thoughts Work for Reasoning? [51.2699797837818]
We propose complexity-impacted reasoning score (CIRS) to measure correlation between code and reasoning abilities.
Specifically, we use the abstract syntax tree to encode the structural information and calculate logical complexity.
Code will be integrated into the EasyInstruct framework at https://github.com/zjunlp/EasyInstruct.
arXiv Detail & Related papers (2023-08-29T17:22:39Z) - Modeling Hierarchical Reasoning Chains by Linking Discourse Units and
Key Phrases for Reading Comprehension [80.99865844249106]
We propose a holistic graph network (HGN) which deals with context at both discourse level and word level, as the basis for logical reasoning.
Specifically, node-level and type-level relations, which can be interpreted as bridges in the reasoning process, are modeled by a hierarchical interaction mechanism.
arXiv Detail & Related papers (2023-06-21T07:34:27Z) - Guiding the PLMs with Semantic Anchors as Intermediate Supervision:
Towards Interpretable Semantic Parsing [57.11806632758607]
We propose to incorporate the current pretrained language models with a hierarchical decoder network.
By taking the first-principle structures as the semantic anchors, we propose two novel intermediate supervision tasks.
We conduct intensive experiments on several semantic parsing benchmarks and demonstrate that our approach can consistently outperform the baselines.
arXiv Detail & Related papers (2022-10-04T07:27:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.